Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21020078-7    https://doi.org/10.11896/cldb.21020078
  无机非金属及其复合材料 |
层状双金属氢氧化物在水泥混凝土中的形成、作用机制及应用
许闯, 张祖华, 陈慕翀, 史才军, 李宁, 刘翼玮
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
Formation, Interaction Mechanisms and Application of Layered Double Hydroxides in Cement Concrete
XU Chuang, ZHANG Zuhua, CHEN Muchong, SHI Caijun, LI Ning, LIU Yiwei
Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province,College of Civil Engineering,Hunan Univer-sity,Changsha 410082,China
下载:  全 文 ( PDF ) ( 3968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化、硫酸盐侵蚀以及氯离子诱导腐蚀等三种常见混凝土耐久性问题的本质是外界离子进入混凝土与水泥石或钢筋发生不利的物理化学反应。层状双金属氢氧化物(LDHs)具有独特的层状结构和阴离子吸附功能,可作为混凝土内部有害离子的吸附剂,从而改善混凝土的耐久性。目前,尽管LDHs在水泥混凝土中的应用还处于早期探索阶段,但其相关作用机理研究已经开展得较丰富。本文综述了水泥混凝土(包括复合硅酸盐水泥和碱激发材料体系)中类水滑石产物(MgAl-LDHs)和AFm相(CaAl-LDHs)的形成机制,阐述了LDHs与混凝土中离子的作用机制,评估了MgAl-LDHs和CaAl-LDHs对水泥混凝土强度发展和耐久性能的影响,并指出开发LDHs作为混凝土矿物外加剂的广阔应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许闯
张祖华
陈慕翀
史才军
李宁
刘翼玮
关键词:  混凝土  层状双金属氢氧化物  阴离子吸附  水化作用  力学性能  耐久性    
Abstract: Carbonization, sulfate attack and chloride-induced corrosion are the three common durability problems for concrete, and the mechanisms behind are due to the physical and chemical reactions between the cement paste or steel bar and external ions entering via concrete body. Laye-red double hydroxides (LDHs) are characterized by anion adsorption and unique layer structure, which can act as anion adsorbents in concretes and improve their durability. Although the application of LDHs in cement concrete is still at an early stage, the research on the interaction mechanisms of LDHs is relatively rich and rapidly developing. This paper provides a review on the formation mechanism of hydrotalcite-like compounds (MgAl-LDHs) and AFm phase (CaAl-LDHs) in cement concrete (including complex Portland cement and alkali-activated material systems), illustrates the interaction mechanism between LDHs and ions in concrete, and evaluates the influences of MgAl-LDHs and CaAl-LDHs on strength development and durability of cement concrete. The key problems and application prospects of LDHs as a concrete mineral additive are also proposed in this paper.
Key words:  concrete    layered double hydroxides    anion adsorption    hydration    mechanical property    durability
发布日期:  2022-06-09
ZTFLH:  TQ172.4  
基金资助: 国家自然科学基金(51638008;51878263;U2001225)
通讯作者:  zuhuazhang@hnu.edu.cn   
作者简介:  许闯,2018年6月毕业于湖北工业大学,获工学学士学位。现为湖南大学土木工程学院硕士研究生。在张祖华教授的指导下,主要从事LDHs对碱激发矿渣氯离子迁移的影响及其相互作用的研究。
张祖华,湖南大学土木工程学院教授、博士研究生导师。2006年本科毕业于南京工业大学无机非金属专业,2014年博士毕业于南昆士兰大学。2014年起历任南昆士兰大学研究员、高级研究员。2017 年获第十三批“千人计划”青年项目资助。研究领域为低碳混凝土材料制备、固体废弃物资源化和特种功能混凝土。在《硅酸盐学报》、Cement and Concrete ResearchCement and Concrete Composites等国内外高水平期刊发表SCI/EI论文100余篇,出版专著章节6章,合编国际会议论文集1部,授权专利4项。在碱激发水泥领域提出了粉煤灰活性指数和风化潜力的概念及其定量表征方法,在 2017 年第三届国际化学激发材料会议上获得“杰出青年研究员”奖。担任Composites Part B: Engineering Journal编委、Journal of Sustainable Cement-Based Materials执行主编、Materials Frontier-Structure副主编。
引用本文:    
许闯, 张祖华, 陈慕翀, 史才军, 李宁, 刘翼玮. 层状双金属氢氧化物在水泥混凝土中的形成、作用机制及应用[J]. 材料导报, 2022, 36(11): 21020078-7.
XU Chuang, ZHANG Zuhua, CHEN Muchong, SHI Caijun, LI Ning, LIU Yiwei. Formation, Interaction Mechanisms and Application of Layered Double Hydroxides in Cement Concrete. Materials Reports, 2022, 36(11): 21020078-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020078  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21020078
1 Naik T R. Practice Periodical on Structural Design and Construction, 2008, 13(2), 98.
2 Samson G, Deby F, Garciaz J L,et al. Cement and Concrete Composites, 2020, 112, 103672.
3 Lollini F, Redaelli E. Construction and Building Materials, 2021, 276, 122122.
4 Ragoug R, Metalssi O O, Barberon F, et al. Cement and Concrete Research, 2019, 116, 134.
5 Yoon S, Moon J, Bae S,et al. Materials Chemistry and Physics, 2014, 145(3), 376.
6 Ma J T, Wang D G, Duan P, et al. Journal Wuhan University of Techno-logy-Materials Science Edition, 2019, 34(6), 1400.
7 Meyn M, Beneke K, Lagaly G. Inorganic Chemistry, 1990, 29(26), 5201.
8 Millange F, Walton R I, Lei L X, et al. Chemistry of Materials, 2000, 12(7), 1990.
9 Sui S Y, Wilson W, Georget F, et al. Cement and Concrete Research, 2019, 125, 105864.
10 de Weerdt K, Lothenbach B, Geiker M R, et al. Cement and Concrete Research, 2019, 115, 80.
11 Richardson I G, Brough A R, Groves G W, et al. Cement and Concrete Research, 1994, 24(5), 813.
12 Li B, Zhang S Z, Li Q, et al. Construction and Building Materials, 2019, 222, 96.
13 Zhang S P, Yu F, He W T, et al. Applied Sciences, 2020, 10(11), 3760.
14 Rives V, del Arco M, Martín C. Applied Clay Science, 2014, 88-89, 239.
15 Zuo J D, Wu B, Luo C Y,et al. Corrosion Science, 2019, 152, 120.
16 Xu Z P, Lu G Q. Chemistry of Materials, 2005, 17(5), 1055.
17 Prinetto F, Ghiotti G, Graffin P, et al. Microporous and Mesoporous Materials, 2000, 39(1-2), 229.
18 Phillips J D, Vandeperre L J. Journal of Nuclear Materials, 2011, 416(1-2), 225.
19 Cao Y H, Zheng D J, Luo J S, et al. Journal of the Electrochemical Society, 2019, 166(16), 617.
20 Oh J E, Monteiro P J M, Jun S S, et al. Cement and Concrete Research, 2010, 40(2), 189.
21 Kayali O, Khan M S H, Ahmed M S. Cement and Concrete Composites, 2012, 34(8), 936.
22 Khan M S H, Kayali O, Troitzsch U. Materials and Structures, 2016, 49(11), 4609.
23 Bernal S A, Nicolas R S, Myers R J, et al. Cement and Concrete Research, 2014, 57, 33.
24 Chen Y X, Shui Z H, Chen W, et al. Construction and Building Mate-rials, 2016, 125, 766.
25 Jin F, Gu K, Al-Tabbaa A. Construction and Building Materials, 2014, 51, 395.
26 Burciaga-Díaz O, Betancourt-Castillo I. Cement and Concrete Research, 2018, 105, 54.
27 Hwang C L, Vo D H, Tran V A, et al. Construction and Building Materials, 2018, 186, 503.
28 Jin F, Gu K, Al-Tabbaa A. Cement and Concrete Composites,2015,57,8.
29 Yoon H N, Park S M, Lee H K. Construction and Building Materials, 2018, 178, 584.
30 Mao N, Zhou C H, Keeling J, et al. Applied Clay Science,2018,159,25.
31 Machner A, Zajac M, Ben Haha M,et al. Cement and Concrete Research, 2018, 107, 163.
32 Machner A, Zajac M, Ben Haha M, et al. Cement and Concrete Compo-sites, 2018, 89, 89.
33 Ye H L, Fu C Q, Yang G J. Cement and Concrete Composites, 2019, 103, 224.
34 Ye H L, Fu C Q, Yang G J. Cement and Concrete Composites, 2020, 105, 103442.
35 Zhang W, Yao X, Yang T, et al. Advances in Cement Research, 2019, 31(8), 370.
36 Yang T, Zhang Z H, Zhu H J, et al. Construction and Building Mate-rials, 2019, 211, 329.
37 Haha M B, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2012, 42(1), 74.
38 Walkley B, San Nicolas R, Sani M A, et al. Cement and Concrete Research, 2017, 99, 155.
39 Ye H L. Materials Characterization, 2018, 140, 95.
40 Matschei T, Lothenbach B, Glasser F P. Cement and Concrete Research, 2007, 37(2), 118.
41 Zibara H, Hooton R D, Thomas M D A, et al. Cement and Concrete Research, 2008, 38(3), 422.
42 Shi Z G, Geiker M R, de Weerdt K, et al. Cement and Concrete Research, 2017, 95, 205.
43 Ke X Y, Bernal S A, Hussein O H, et al. Materials and Structures, 2017, 50(6), 252.
44 Dousti A, Beaudoin J J, Shekarchi M. Construction and Building Mate-rials, 2017, 154, 1035.
45 Wang D H, Shi C J, Jia H F. Materials Reports A: Review Papers, 2018, 32(5), 2986(in Chinese).
王德辉, 史才军, 贾煌飞. 材料导报:综述篇, 2018, 32(5), 2986.
46 Wang Y Y, Shui Z H, Gao X, et al. Construction and Building Mate-rials, 2019, 201, 380.
47 Zajac M, Rossberg A, Le Saout G, et al. Cement and Concrete Compo-sites, 2014, 46, 99.
48 Ke X Y, Bernal S A, Provis J L. Cement and Concrete Research, 2016, 81, 24.
49 Zajac M, Bremset S K, Whitehead M, et al. Cement and Concrete Research, 2014, 65, 21.
50 Mishra G, Dash B, Pandey S. Applied Clay Science, 2018, 153, 172.
51 Hongo T, Tsunashima Y, Yamasaki A. Sustainable Materials and Technologies, 2017, 12, 23.
52 Cavani F, Trifirò F, Vaccari A. Catalysis Today, 1991, 11(2), 173.
53 Khan A I, O'Hare D. Journal of Materials Chemistry, 2002, 12(11), 3191.
54 Schutz A, Biloen P. Journal of Solid State Chemistry, 1987, 68(2), 360.
55 Costa D G, Rocha A B, Souza W F, et al. Applied Clay Science, 2012, 56, 16.
56 Xu J X, Song Y B, Tan Q P, et al. Journal of Materials Science, 2017, 52(10), 5908.
57 Chen M Z, Wu F, Yu L W, et al. CrystEngComm, 2019, 21(44), 6790.
58 Hibino T. European Journal of Inorganic Chemistry, 2018, 2018(6), 722.
59 Morimoto K, Anraku S, Hoshino J, et al. Journal of Colloid and Interface Science, 2012, 384, 99.
60 Chen Y X, Shui Z H, Chen W, et al. Construction and Building Mate-rials, 2015, 93, 1051.
61 Ke X Y, Bernal S A, Provis J L. Cement and Concrete Research, 2017, 100, 1.
62 Guo L, Wu Y Y, Duan P, et al. Construction and Building Materials, 2020, 232, 117256.
63 Wu Y Y, Duan P, Yan C J. Applied Clay Science, 2018, 158, 123.
64 Erickson K L, Bostrom T E, Frost R L. Materials Letters, 2005, 59(2-3), 226.
65 Chen Y X, Yu R, Wang X P, et al. Construction and Building Mate-rials, 2018, 177, 51.
66 Cao Y H, Dong S G, Zheng D J, et al. Corrosion Science, 2017, 126, 166.
67 Guan X M, Li H Y, Luo S Q, et al. Cement and Concrete Composites, 2016, 70, 15.
68 Ke X Y, Bernal S A, Provis J L. Green Materials, 2019, 7(2), 52.
69 Xu S L, Chen Z R, Zhang B W, et al. Chemical Engineering Journal, 2009, 155(3), 881.
70 Li H Y, Guan X M, Yang L, et al. Journal Wuhan University of Techno-logy-Materials Science Edition, 2017, 32(5), 1101.
71 Zou D H, Wang K, Li H Y, et al. Construction and Building Materials, 2019, 223, 910.
72 Land G, Stephan D. Cement and Concrete Composites, 2015, 57, 64.
73 Qu Z Y, Yu Q L, Brouwers H J H. Cement and Concrete Research, 2018, 105, 81.
74 Yang L, Xu J B, Huang Y B, et al. Construction and Building Mate-rials, 2021, 272, 122002.
75 Liu T, Chen Y X, Yu Q L, et al. Construction and Building Materials, 2020, 250, 118865.
76 Yang Z X, Fischer H, Polder R. Cement and Concrete Composites, 2015, 58, 105.
77 Sanjuán M Á, Estévez E, Argiz C, et al. Cement and Concrete Compo-sites, 2018, 90, 257.
78 Bertos M F, Simons S J R, Hills C D, et al. Journal of Hazardous Mate-rials, 2004, 112(3), 193.
79 Duan P, Chen W, Ma J T, et al. Construction and Building Materials, 2013, 48, 601.
80 Duan P, Yan C J, Zhou W. Construction and Building Materials, 2018, 160, 725.
81 Chen A J, Yun Y, Ma J T, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(1), 301(in Chinese).
陈爱玖, 云宇, 马军涛, 等. 硅酸盐通报, 2017, 36(1), 301.
82 Shui Z H, Yu R, Chen Y X, et al. Construction and Building Materials, 2018, 176, 228.
83 Ma J T, Wang D G, Chen H, et al. Journal of Testing and Evaluation, 2020, 48(3), 1814.
84 Yang Z, Fischer H, Cerezo J, et al. Materials and Corrosion, 2016, 67(7), 721.
85 Yang Z X, Fischer H, Polder R. Cement and Concrete Composites, 2014, 47, 87.
86 Lee Y, Lim S, Lee H. Materials, 2020, 13(2), 359.
87 Chung C W, Jung H Y, Kwon J H, et al. Journal of Structural Integrity and Maintenance, 2019, 4(1), 37.
88 Hu Y R, Li H H, Wang Q, et al. Construction and Building Materials, 2019, 229, 116921.
89 Ann K Y, Jung H S, Kim H S, et al. Cement and Concrete Research, 2006, 36(3), 530.
90 Cao Y H, Zheng D J, Dong S G, et al. Journal of the Electrochemical Society, 2019, 166(11), 3106.
91 Yang Z X, Polder R, Mol J M C. Heron, 2017, 62(2), 61.
92 Yang Z X, Fischer H, Cerezo J, et al. Construction and Building Mate-rials, 2013, 47, 1436.
93 Tian Y W, Dong C F, Wang G, et al. Materials Letters,2019,236,517.
94 Falzone G, Balonis M, Bentz D, et al. Cement and Concrete Research, 2017, 101, 82.
95 Ye H L, Chen Z J. Journal of Materials in Civil Engineering, 2019, 31(8), 04019160.
96 Ye H L. Cement and Concrete Research, 2021, 139, 106267.
97 Su Y, Qiu S H, Yang D P, et al. Journal of Hazardous Materials, 2020, 391, 122215.
98 Hong S X, Qin S F, Liu Z M, et al. Construction and Building Mate-rials, 2021, 276, 122259.
99 Huang Q Y, Wang Y B, Zhou B T, et al. Corrosion Science, 2021, 179, 109165.
100 Zhang J, Shi C J, Zhang Z H, et al. Construction and Building Mate-rials, 2017, 152, 598.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[5] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[8] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[9] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[10] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[11] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[12] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[13] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[14] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[15] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed