Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17111-17124    https://doi.org/10.11896/cldb.21010141
  材料与可持续发展(四)———材料再制造与废弃物料资源化利用* |
活性炭对VOCs的吸附研究进展
杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东
西安交通大学化学工程与技术学院,西安 710049
A Review on VOCs Adsorption by Activated Carbon
YANG Xiaona, REN Xiaoling, YAN Xiaoqing, WU Zhiqiang, YANG Guidong
School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 6488KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 挥发性有机化合物(VOCs)是大气主要污染物之一,包括烃类化合物和芳香族化合物,如乙二醇和苯等。VOCs不仅导致温室效应,破坏臭氧层,而且当其浓度偏高时,会引起人体不适,严重时危及生命,因此如何有效地处理VOCs成为学术界和工业界的研究热点。目前,处理VOCs的技术众多,包括催化氧化等破坏性回收技术和吸附等可恢复性技术。相比于在回收过程中不可避免会产生有毒副产物的破坏性回收技术,吸附技术具有VOCs回收效率高、操作简单、能量消耗低等优点,因而被广泛应用。吸附技术的核心是吸附剂。活性炭因具有较高的比表面积、良好的孔道结构以及易于表面官能团改性等优点,被认为是一种具有潜力的VOCs吸附材料。但目前未经改性的活性炭通常比表面积小、表面官能团含量少、对VOCs的吸附能力和选择性较差且疏水能力差,极大地影响了其在潮湿环境中的应用。鉴于此,本文在介绍活性炭对VOCs吸附和脱附原理的基础上,从活性炭的物理结构和表面化学性质两个角度出发,重点介绍不同改性方法(物理改性、化学改性等)改性后的活性炭对VOCs吸附能力和选择性的影响,并对吸附饱和后活性炭的再生方法进行总结。本文旨在系统总结活性炭对VOCs的吸附、解吸和再生机理,以及活性炭改性技术的最新进展,为制备比表面积大、表面官能团丰富的工业化活性炭提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晓娜
任晓玲
严孝清
吴志强
杨贵东
关键词:  挥发性有机化合物(VOCs)  吸附  活性炭  改性方法  吸附能力  再生方法    
Abstract: Volatile organic compounds (VOCs) such as hydrocarbon compounds and aromatic compounds have been recognized as one of the major environmental pollutants. Owing to their toxic and carcinogenic nature, most VOCs harm the environment with ozone sphere damage and threaten human health and lead to irreversible damage after high-concentration exposure. Therefore, industries and research communities face great challenges to effectively remove VOCs by developing practical environment remediation tools and technologies. Several technologies have been investigated, including destructive recovery technologies and recoverable technologies. Compared to other destructive recovery technologies, adsorption is established as one of the most promising strategies for VOCs abatement thanks to its characteristics of cost-effectiveness, simplicity, and low energy consumption. The core of the adsorption technology is the adsorbent. Activated carbon (AC) is considered an excellent adsorbent due to its developed pore structure, high surface area, and a high degree of surface reactivity. However, the structural and surface chemical properties of AC can be quite complicated, which have important effects on the adsorption capacity, selectivity and application in the humid environments. Therefore, the adsorption and desorption mechanism of AC for VOCs is introduced in this work, concerning the effect of diffe-rent modification methods (physical modification, chemical modification, etc.) on the adsorption capacity and selectivity AC, the regeneration methods of AC after adsorption saturation are summarized carefully. This overview provides a comprehensive understanding of VOCs adsorption, desorption, and regeneration mechanisms and up-to-date progress of modification technologies for AC.
Key words:  volatile organic compounds (VOCs)    adsorption    activated carbon    modification method    adsorption capacity,regeneration method
                    发布日期:  2021-09-26
ZTFLH:  X701  
  TQ127.1  
基金资助: 国家自然科学项目(U1862105)
通讯作者:  guidongyang@xjtu.edu.cn   
作者简介:  杨晓娜,2018年毕业于西北大学化工学院,获得工学学士学位。现为西安交通大学化学工程与技术学院硕士研究生。目前主要研究领域为半焦基活性炭的制备及应用。
杨贵东,西安交通大学教授,博士研究生导师,西安交通大学-牛津大学催化国际联合实验室主任。主要从事光催化反应过程强化,催化与吸附新材料开发的研究工作。
引用本文:    
杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
YANG Xiaona, REN Xiaoling, YAN Xiaoqing, WU Zhiqiang, YANG Guidong. A Review on VOCs Adsorption by Activated Carbon. Materials Reports, 2021, 35(17): 17111-17124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010141  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17111
1 Kamal M S, Razzak S A, Hossain M M. Atmospheric Environment, 2016, 140, 117.
2 Abdul Manap N R, Shamsudin R, Maghpor M N, et al. Journal of Environmental Chemical Engineering, 2018, 6(1), 970.
3 Chung W C, Mei D H, Tu X, et al. Catalysis Reviews, 2018, 61(2), 270.
4 Uria-Tellaetxe I, Navazo M, Blas M, et al. Atmospheric Environment, 2016, 131, 279.
5 Xian S, Yu Y, Xiao J, et al. RSC Advances, 2015, 5(3), 1827.
6 Yang C, Miao G, Pi Y, et al. Chemical Engineering Journal, 2019, 370, 1128.
7 Lhuissier M, Couvert A, Amrane A, et al. Chemical Engineering Research and Design, 2018, 138, 482.
8 Rodriguez C A S, Biard P F, Guihéneuf S, et al. Chemical Engineering Journal, 2019, 360, 1416.
9 Wang H, Guo H, Zhao Y, et al. International Journal of Refrigeration, 2020, 116, 23.
10 Yang W, Zhou H, Zong C, et al. Separation and Purification Technology, 2018, 200, 273.
11 Luengas A, Barona A, Hort C, et al. Reviews in Environmental Science and Bio/Technology, 2015, 14(3), 499.
12 Li X, Zhang H, Wei J, et al. Microporous and Mesoporous Materials, 2020, 303, 110190.
13 Yu X, Liu S, Lin G, et al. RSC Advances, 2018, 8(38), 21541.
14 Zhang L, Tu L Y, Liang Y, et al. RSC Advances, 2018, 8(74), 42280.
15 Zhou Y, Zhou L, Zhang X, et al. Microporous and Mesoporous Materials, 2016, 225, 488.
16 Deng L, Yuan P, Liu D, et al. Applied Clay Science, 2017, 143, 184.
17 Chen S, Lucier B E G, Boyle P D, et al. Chemistry of Materials, 2016, 28(16), 5829.
18 Le-Minh N, Sivret E C, Shammay A, et al. Critical Reviews in Environmental Science and Technology, 2018, 48(4), 341.
19 Zhu L, Shen D, Luo K H. Journal of Hazardous Materials, 2020, 389, 122102.
20 Chiang Y C, Chiang P C, Huang C P. Carbon, 2001, 39, 523.
21 Jahandar L M, Atkinson J D, Hashisho Z, et al. Journal of Hazardous Materials, 2016, 315, 42.
22 Carvajal-Bernal A M, Gómez-Granados F, Giraldo L, et al. Microporous and Mesoporous Materials, 2020, 302, 110196.
23 Ma X, Zhang Z, Wu H, et al. Energy & Fuels, 2019, 34(3), 3679.
24 Zhang X, Gao B, Zheng Y, et al. Bioresource Technology, 2017, 245(Pt A), 606.
25 Qian Q, Gong C, Zhang Z, et al. Adsorption, 2015, 21(4), 333.
26 Wang G, Dou B, Zhang Z, et al. Journal of Environmental Engineering and Science (China), 2015, 30, 65.
27 Lee H M, Baek J, An K H, et al. Industrial & Engineering Chemistry Research, 2018, 58(2), 736.
28 Li S, Song K, Zhao D, et al. Microporous and Mesoporous Materials, 2020, 302, 110220.
29 An Y, Fu Q, Zhang D, et al. Chemosphere, 2019, 227, 9.
30 Tang L, Li L, Chen R, et al. Journal of Environmental Chemical Engineering, 2016, 4(2), 2045.
31 Khazraei V A, Haghighat F, Lee C S, et al. Clean-Soil, Air, Water, 2015, 43(4), 469.
32 Yao X, Liu Y, Li T, et al. Journal of Hazardoud Materials, 2020, 392, 122323.
33 Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, et al. Carbon, 2019, 148, 214.
34 Kutluay S, Baytar O, Şahin Ö. Journal of Environmental Chemical Engineering, 2019, 7(2), 102947.
35 Lashaki M J, Fayaz M, Wang H H, et al. Environmental Science & Technology, 2012, 46(7), 4083.
36 Xiang W, Zhang X, Chen K, et al. Chemical Engineering Journal, 2020, 385, 123842.
37 Zhu J, Li Y, Xu L, et al. Ecotoxicology and Environmental Safety, 2018, 165, 115.
38 Son Y R, Park S J. Materials Chemistry and Physics, 2020, 242, 122454.
39 Zhou J, Luo A, Zhao Y. Journal of the Air & Waste Management Association, 2018, 68(12), 1269.
40 Nazem M A, Zare M H, Shirazian S. RSC Advances, 2020, 10(3), 1463.
41 Zhao X, Zeng X, Qin Y, et al. Chemosphere, 2018, 206, 285.
42 Hu L, Cheng W, Zhang W, et al. Journal of Porous Materials, 2016, 24(2), 541.
43 Chen Y T, Huang Y P, Wang C, et al. Journal of the Air & Waste Management Association, 2020, 70(6), 616.
44 Baytar O, Sahin O, Horoz S, et al. Environmental Science and Pollution Research, 2020, 27(21), 26191.
45 Lyu H, Gao B, He F, et al. Environmental Pollution, 2018, 233, 54.
46 Cao Y, Xiao W, Shen G, et al. Bioresource Technology, 2019, 273, 70.
47 Lei B, Xie H, Chen S, et al. Environmental Science and Pollution Research, 2020, 27(21), 27072.
48 Vohra M S. Arabian Journal for Science and Engineering, 2015, 40(11), 3007.
49 Zhang X, Gao B, Fang J, et al. Chemosphere, 2019, 218, 680.
50 Carvajal-Bernal A M, Gomez-Granados F, Giraldo L, et al. Heliyon, 2019, 5(1), e01156.
51 Aguayo-Villarreal I A, Montes-Morán M A, Hernández-Montoya V, et al. Ecological Engineering, 2017, 106, 400.
52 Zhang G Z, Lei B M, Chen S M, et al. Journal of Environmental Chemical Engineering, 2021,9(4),105387.
53 An Z, Kong S, Zhang W, et al. Materials (Basel), 2020, 13(3), 716.
54 Shen Y, Zhang N, Fu Y. Journal of Environmental Management, 2019, 241, 53.
55 Choma J, Osuchowski Ł, Dziura A, et al. Adsorption Science & Technology, 2015, 33(6-8), 587.
56 Guo Q, Liu Y, Qi G. Journal of Nanoparticle Research,2019,21(8),175.
57 Liu H B, Yang B, Xue N D. Environmental Science, 2016, 37(9), 3670(in Chinese).
刘寒冰, 杨兵, 薛南冬. 环境科学, 2016, 37(9), 3670.
58 Khan A, Szulejko J E, Samaddar P, et al. Chemical Engineering Journal, 2019, 361, 1576.
59 Bedane A H, Guo T X, Eic' M, et al. The Canadian Journal of Chemical Engineering, 2018, 97(1), 238.
60 Chen R, Li L, Liu Z, et al. Journal of the Air & Waste Management Association, 2017, 67(6), 713.
61 Falco G, Barczak M, Montagnaro F, et al. ACS Applied Materials & Interfaces, 2018, 10(9), 8066.
62 De Falco G, Li W, Cimino S, et al. Carbon, 2018, 138, 283.
63 Hossein T N H M, Alivand M S, Rashidi A, et al. Journal of Hazardous Materials, 2020, 384, 121317.
64 Mohammed J, Nasri N S, Ahmad Zaini M A, et al. International Biodeterioration & Biodegradation, 2015, 102, 245.
65 Zhu J, Chen R, Zeng Z, et al. Environmenntal Science and Pollution Research, 2019, 26(16), 16166.
66 Zhou K, Ma W, Zeng Z, et al. Chemical Engineering Journal, 2019, 372, 1122.
67 Rengga W D P, Chafidz A, Sudibandriyo M, et al. Journal of Environmental Chemical Engineering, 2017, 5(2), 1657.
68 Lei B, Liu B, Zhang H, et al. Journal of Environmental Engineering and Science, 2020, 88, 122.
69 Laskar I I, Hashisho Z, Phillips J H, et al. Separation and Purification Technology, 2019, 212, 632.
70 Oh J Y, You Y W, Park J, et al. Journal of Industrial and Engineering Chemistry, 2019, 71, 242.
71 Liu H B, Yang B, Xue N D. Journal of Hazardous Materials, 2016, 318, 425.
72 Li X, Zhang L, Yang Z, et al. Separation and Purification Technology, 2020, 239, 116517.
73 Mao H, Zhou D, Hashisho Z, et al. RSC Advances, 2015, 5(45), 36051.
74 Qiu W, Dou K, Zhou Y, et al. Chinese Journal of Chemical Enginee-ring, 2018, 26(1), 81.
75 Zhang Z, Lei Y, Li D, et al. Renewable Energy, 2020, 153, 1091.
76 Shen Y, Zhang N. Bioresource Technology, 2019, 282, 294.
77 Li Q, Yong Y, Ding W C, et al. Environmental Science, 2016, 37(6), 2065(in Chinese).
李桥, 雍毅, 丁文川, 等. 环境科学, 2016, 37(6), 2065.
78 Cherbański R. Chemical Engineering and Processing-Process Intensification, 2018, 123, 148.
79 Yang Z, Yi H, Tang X, et al. Chemical Engineering Journal, 2017, 319, 191.
80 Mao H, Zhou D, Hashisho Z, et al. Journal of Industrial and Enginee-ring Chemistry, 2015, 21, 516.
81 Fayaz M, Shariaty P, Atkinson J D, et al. Environmental Science & Technology, 2015, 49(7), 4536.
82 Zanella O, Bilibio D, Priamo W L, et al. Environmental Technology, 2017, 38(5), 549.
83 Liu X Y, Ou Y P. Materials Reports A: Review Papers, 2017, 31(1), 143(in Chinese).
刘晓咏, 欧阳平. 材料导报:综述篇, 2017, 31(1), 143.
84 Chen Z H, Chen J, Wang Q, et al. Journal of Nanjing Normal University, 2017, 40(4), 80(in Chinese).
陈宗华, 陈杰, 汪琼, 等. 南京师大学报, 2017, 40(4), 80.
85 Chen J, Qin Y, Chen Z, et al. Chemical Engineering Journal, 2016, 293, 281.
86 Danilo H, Duarte J, Josealdo T, et al. Separotion and Purification Technology, 2020, 250, 117112.
87 Jatta S, Huang S, Liang C. Chemical Engineering Journal, 2019, 375, 122034.
88 Sun X H, Zhu Z Q, Huang W Q, et al. Chemical Industry and Enginee-ring Progress, 2020, 39(S2), 346(in Chinese).
孙宪航, 朱忠泉, 黄维秋, 等. 化工进展, 2020, 39(S2), 346.
89 Takahashi N, Ushiki I, Hamabe Y, et al. The Journal of Supercritical Fluids, 2016, 107, 226.
90 Benkhedda J, Jaubert J N, Barth D, et al. Separation Science and Technology, 2001, 36(10), 2197.
91 Tan C S, Liou D C. Separation Science and Technology,1989,24(1-2),111.
[1] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[2] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[3] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[4] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[5] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[6] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[7] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[8] 周川, 杨博, 杨光, 杨德瑞, 杨小兵. 防毒面具用Zr-MOFs吸附材料研究进展[J]. 材料导报, 2021, 35(5): 5140-5146.
[9] 李诗杰, 韩奎华. 利用少量氧化镍负载提高活性炭比电容[J]. 材料导报, 2021, 35(4): 4012-4016.
[10] 王立辉, 孙刚, 李丹, 夏惠芬, 李文卓, 许天寒, 张红玉, 张思琪. 新型抗盐聚合物溶液的性能及驱油效果评价[J]. 材料导报, 2021, 35(2): 2171-2177.
[11] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[12] 于洋, 朱鸣, 陈叔平, 古纯霖, 张波, 黄宇巍. 除氢材料在高真空多层绝热设备中维持高真空行为研究[J]. 材料导报, 2021, 35(14): 14035-14039.
[13] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[14] 韦文厂, 刘峥, 魏润芝, 吕奕菊, 韩佳星, 张淑芬. 2-氨基芴双希夫碱在模拟循环冷却水中对低碳钢的缓蚀性能[J]. 材料导报, 2021, 35(12): 12196-12201.
[15] 胡耀强, 房得珍, 叶秀深, 张慧芳, 刘海宁, 吴志坚. 西瓜皮基生物质碳气凝胶的制备及对染料的吸附[J]. 材料导报, 2021, 35(11): 11007-11012.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed