Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17125-17135    https://doi.org/10.11896/cldb.20090010
  材料与可持续发展(四)———材料再制造与废弃物料资源化利用* |
垃圾焚烧炉关键服役材料发展现状及研究趋势
刘功起, 吴玉锋, 杨天伟, 李彬, 王朝辉
北京工业大学材料与制造学部,北京 100124
The Development Status and Research Trend of Key Service Materials for Waste Incinerators
LIU Gongqi, WU Yufeng, YANG Tianwei, LI Bin, WANG Zhaohui
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 5452KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 城市垃圾的处置已成为全球各国及各地政府面临的最严峻的城市问题之一,垃圾焚烧作为重要的处理手段,不仅可以达到减容减重的目的,而且还可以实现能量的梯级利用,实现垃圾资源效益的最大化。垃圾焚烧炉作为一种垃圾焚烧过程中的关键设备,使用过程中垃圾物化特性、焚烧温度、烟气成分等因素均会对垃圾焚烧炉关键服役材料的寿命造成一定的影响。因此,研究开发耐高温、耐腐蚀、长寿命的关键服役材料是保证垃圾焚烧炉正常有序运转以及安全生产的关键。典型的垃圾焚烧炉关键服役材料有耐火材料、金属管壁面涂层材料、烟气处理材料等。
近年来,随着垃圾焚烧炉向大型化、自动化方向发展,现有的普通耐火材料很难满足垃圾焚烧炉用耐火性能的要求,因此垃圾焚烧炉对耐火材料的选择提出了更高的特殊要求。当前焚烧炉用耐火材料的研究主要围绕垃圾焚烧炉不同部分及不同焚烧气氛条件下耐火材料的特殊要求,进行含铬耐火材料抗蚀性能的研究以及以碳化硅为代表的无铬化耐火材料的研发。垃圾焚烧过程产生大量富含酸性腐蚀性气体及卤盐的飞灰颗粒,极易对焚烧炉金属管壁造成严重侵蚀,因此学者和企业积极开发抗腐蚀性涂层防护材料。当前的研究主要集中在堆焊涂层防护材料、热喷涂防护材料以及激光熔覆防护材料的研发。垃圾焚烧烟气的无害化处置,也是垃圾焚烧技术开发以及关键服役材料研究的重点问题,当前的研究主要集中在烟气脱N、脱S催化剂材料的开发、烟气处理用除尘过滤材料的研制,尤其是耐高温耐腐蚀新型纤维材料的长寿化设计。
本文根据典型垃圾焚烧炉类型及其特点,综述了垃圾焚烧炉关键服役所需的耐火材料、金属管壁面涂层材料、烟气处理材料等垃圾焚烧炉关键服役材料的研究进展,提出了目前研究和应用中面临的问题,并展望了未来的发展趋势,以期为我国垃圾焚烧炉关键服役材料进一步应用和推广提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘功起
吴玉锋
杨天伟
李彬
王朝辉
关键词:  垃圾焚烧炉  耐火材料  腐蚀防护  烟气处理    
Abstract: The disposal of municipal waste has almost become one of the most serious urban problems faced by governments all over the world. As an important treatment means, incineration can not only achieve the purpose of reducing capacity and weight, but also realize the cascade utilization of energy and maximize the benefit of garbage resources. As a key equipment in the process of waste incineration, the physicochemical characteristics of waste, incineration temperature, flue gas composition and other factors in the process of use will have a certain impact on the life of the key service materials of waste incineration. Therefore, the research and development of key service materials with high temperature resistance, corrosion resistance and long life is the key to ensure the normal and orderly operation of waste incinerator and safe production. Typical key service materials of waste incinerator mainly include refractory materials, metal tube wall coating materials, flue gas treatment materials, etc.
In recent years, with the development of garbage incinerators towards large scale and automation, it is difficult for the existing ordinary refractories to meet the requirements of the fire resistance of waste incinerators. Therefore, the selection of refractory materials for waste incinerators has put forward higher special requirements. At present, the research of refractories for incinerators mainly focuses on the development of corrosion resistance of chromium-containing refractories and the development of chromium-free refractories represented by silicon carbide. In view of the serious corrosion of waste incineration fly ash on the metal tube wall of incinerators, researchers and enterprises are actively developing anti-corrosive coating protective materials, such as surfacing coating protective materials, thermal spraying protective materials and laser cladding protective materials. The harmless disposal of flue gas is also a key issue in the research of key service materials for waste incineration. The current research mainly focuses on the development of catalyst materials for flue gas de-N and de-S, the development of dust removal filter materials for flue gas treatment, especially the longevity design of new fiber materials with high temperature and corrosion resistance.
In this paper, according to the types and characteristics of waste incinerators, the research progress of typical key service materials of waste incinerators, such as refractory materials, metal tube wall coating materials and flue gas treatment materials, were summarized systematically. The existing problems and the future development trends of typical key service materials of waste incinerators were also summarized and proposed, respectively, which could provide a valuable reference for further popularization and application of typical key service materials of waste incinerators in China.
Key words:  waste incinerator    refractory material    corrosion protection    flue gas treatment
                    发布日期:  2021-09-26
ZTFLH:  TB304  
  TQ175  
基金资助: 国家重点研发计划项目(2018YFC1902504)
通讯作者:  wangzhaohui@bjut.edu.cn   
作者简介:  刘功起,2016年毕业于山东理工大学,获得工学学士学位。现为北京工业大学循环经济研究院博士研究生,在吴玉锋教授的指导下进行研究。目前主要研究领域为二次资源综合利用。
王朝辉,博士,北京工业大学,教授/博士研究生导师,北京工业大学材料与制造学部副主任,国家级精品资源共享课”教学团队骨干,主持国防规划项目课题、国家自然科学基金、国家重点研发计划专题、国家科技支撑计划专题、北京市科委科技计划课题、北京市自然科学基金、企业委托课题等20余项,发表论文40余篇,授权国家发明专利20余项,获“中国有色金属工业科学技术奖二等奖”等。
引用本文:    
刘功起, 吴玉锋, 杨天伟, 李彬, 王朝辉. 垃圾焚烧炉关键服役材料发展现状及研究趋势[J]. 材料导报, 2021, 35(17): 17125-17135.
LIU Gongqi, WU Yufeng, YANG Tianwei, LI Bin, WANG Zhaohui. The Development Status and Research Trend of Key Service Materials for Waste Incinerators. Materials Reports, 2021, 35(17): 17125-17135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090010  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17125
1 Yang B, Zhong Z Q, Huang Q X, et al. Guangdong Electric Power, 2016, 29(6), 5(in Chinese).
杨波,钟志强,黄巧贤,等. 广东电力, 2016, 29(6), 5.
2 Beylot A, Villeneuve J. Waste Management, 2013, 33(12), 2781.
3 Sipra A T, Gao N, Sarwar H. Fuel Processing Technology, 2018, 175, 131.
4 Zhou Y. Shanxi Science and Technology, 2014, 29(1), 16(in Chinese).
周圆. 山西科技, 2014, 29(1), 16.
5 Hong J, Chen Y, Wang M, et al. Renewable & Sustainable Energy Reviews, 2017, 69, 168.
6 Qin L, Huang X, Xue Q, et al. Environmental Pollution, 2020, 258, 113710.
7 Nixon J D, Wright D G, Dey P K, et al. Waste Management, 2013, 33(11), 2234.
8 Zhi T, Chen X, Liu D, et al. Journal of Environmental Sciences, 2016, 48(10), 169.
9 Bai J Y, Bai Z G. Thermal Power Generation, 2008, 37(1), 109(in Chinese).
白建云,白正刚.热力发电, 2008, 37(1), 109.
10 Yang P. Energy Conservation, 2020, 39(7), 123(in Chinese).
杨盼.节能, 2020, 39(7), 123.
11 Frandsen F J. Fuel, 2005, 84(10), 1277.
12 Yang N, Zhang H, Chen M, et al. Waste Management, 2012, 32(12), 2552.
13 Xia Z, Shan P, Chen C, et al. Waste Management, 2020, 104, 183.
14 Tillman D A, Duong D, Miller B. Energy & Fuels, 2009, 23(7), 3379.
15 Zhu J Z, Chen L Q, Gan K. Journal of South China University of Technology (Natural Science Edition), 2005, 33(3), 78(in Chinese).
祝建中,陈烈强,甘轲. 华南理工大学学报(自然科学版), 2005, 33(3), 78.
16 Jiang X G, Wu L, Li X D, et al. Environmental Pollution and Control, 2018, 40(10), 1181(in Chinese).
蒋旭光,吴磊,李晓东,等. 环境污染与防治, 2018, 40(10), 1181.
17 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. Progress in Energy and Combustion Science, 2000, 26(3), 283.
18 Shen X Z, Yan J H, Bai C S, et al. Thermal Power Generation, 2006, 35(7), 24(in Chinese).
沈祥智,严建华,白丛生,等. 热力发电, 2006, 35(7), 24.
19 Yan J H, Lu S Y, Li X D, et al. Journal of Engineering Thermophysics, 2004, 25(1), 155(in Chinese).
严建华,陆胜勇,李晓东,等. 工程热物理学报, 2004, 25(1), 155.
20 Singh H, Sidhu T S, Karthikeyan J, et al. Surface & Coatings Technology, 2015, 261, 375.
21 Caneghem J V, Brems A, Lievens P, et al. Progress in Energy & Combustion Science, 2012, 38(4), 551.
22 Fu Z C, Zhou F F. Energy Research and Management, 2018(3), 130(in Chinese).
付志臣,周飞飞. 能源研究与管理, 2018(3), 130.
23 Zhan H S, Cai B L, Wang F Y, et al. Refractories, 2020, 54(3), 271(in Chinese).
占华生,蔡斌利,王峰裕,等. 耐火材料, 2020, 54(3), 271.
24 Hua X. Industrial Heating, 2001(3), 28(in Chinese).
华夏. 工业加热, 2001(3), 28.
25 Boom A D, Degrez M, Hubaux P, et al. Waste Management, 2011, 31(7), 1505.
26 Mu L, Cai J, Chen J, et al. Energy & Fuels, 2015, 29(3), 1812.
27 Zhang L. Industrial Furnace, 2009, 31(6), 40(in Chinese).
张丽. 工业炉, 2009, 31(6), 40.
28 Yun S N, Jiang M X, Gao L C, et al. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2002, 34(2), 165(in Chinese).
云斯宁,蒋明学,高里存,等. 西安建筑科技大学学报(自然科学版), 2002, 34(2), 165.
29 Zhao J Z, Liu Z X, Chen L B, et al. Refractories, 2000, 34(6), 353(in Chinese).
赵继增,刘忠选,陈路兵,等. 耐火材料, 2000, 34(6), 353.
30 Gui M X. Foreign Refractiories, 2002, 27(1), 33(in Chinese).
桂明玺. 国外耐火材料, 2002, 27(1), 33.
31 Ma Z J, Xing H Z. Refractories, 2015, 49(S3), 469(in Chinese).
马治杰,邢宏智.耐火材料, 2015, 49(S3), 469.
32 Wang L, Zhang Y Q. Power Equipment,2007,21(4),316(in Chinese).
王雷,张运翘. 发电设备, 2007, 21(4), 316.
33 Xu C. Information Recording Materials, 2020, 21(4), 28(in Chinese).
徐陈. 信息记录材料, 2020, 21(4), 28.
34 Gui J H. Foreign Refractiories, 2001, 26(2), 15(in Chinese).
桂剑红. 国外耐火材料, 2001, 26(2), 15.
35 Miyaji T, Sakamoto S, Kudo E. Taikabutsu Overseas, 2002, 2(22), 173.
36 Motoki H, Junichi H, Moda J. Journal of the Technical Association of Refractories, 2004, 3(24), 226.
37 Sekine K, Tsuchiya Y, Kozuka H. Journal of the Technical Association of Refractories, 2005, 25(3), 231.
38 Chen D, Huang A, Gu H Z, et al. Ceramics International, 2015, 41, 14748.
39 Wang Y C, Gao W J. Liaoning Building Materials, 2003(4), 18(in Chinese).
王迎春,高文军. 辽宁建材, 2003(4), 18.
40 Zhu D L. Liaoning Urban and Rural Environmental Science & Technology, 2000, 20(4), 26(in Chinese).
朱德龙. 辽宁城乡环境科技, 2000, 20(4), 26.
41 Moda J, Tanaka K, Kitamura S. Journal of the Technical Association of Refractories, 2008, 3(28), 204.
42 Li J Y, Zhan H S, Liu S H, et al. Refractories, 2020, 54(3), 246(in Chinese).
李金雨,占华生,刘淑焕,等. 耐火材料, 2020, 54(3), 246.
43 Moda J, Wang Z, Ariyoshi K. Journal of the Technical Association of Refractories, 2006, 2(26), 123.
44 Narushima T, Goto T, Iguchi Y, et al. Journal of the American Ceramic Society, 2005, 73(12), 3580.
45 Xiang Y B, Wang W W, Si Y C, et al. Refractories, 2020, 54(3), 228(in Chinese).
相宇博,王文武,司瑶晨,等.耐火材料, 2020, 54(3), 228.
46 Ren C M. Study on high temperature corrosion mechanism and protection technology of waste incineration power plant. Master’s Thesis, North China Electric Power University (Beijing), China, 2018(in Chinese).
任朝明. 垃圾焚烧发电厂高温腐蚀机理及防护技术研究.硕士学位论文, 华北电力大学(北京), 2018.
47 Phongphiphat A, Ryu C, Finney K N, et al. Journal of Hazardous Materials, 2011, 186(1), 218.
48 Skrifvars B J, Backman R, Hupa M, et al. Corrosion Science, 2008, 50(5), 1274.
49 Viklund P, Hjrnhede A, Henderson P, et al. Fuel Processing Technology, 2013, 105, 106.
50 Sun W. Study on characteristics of ash accumulation in fluidized bed waste incineration and simulation experiment of cold ash accumulation. Master’s Thesis, Zhejiang University, China, 2006(in Chinese).
孙巍. 流化床垃圾焚烧积灰特性研究及冷态积灰模拟实验. 硕士学位论文, 浙江大学, 2006.
51 Mohammad D, Davoud H. Engineering Failure Analysis, 2012, 19, 87.
52 Viklund P, Rnhede A H, Henderson P, et al. Fuel Processing Technology, 2013, 105, 106.
53 Lai Z Y, Ma X Q, Tang Y T, et al.Applied Thermal Engineering, 2014, 66, 145.
54 Xu L, Tan W, Zhu Q X, et al. Materials Protection, 2018, 51(5), 131(in Chinese).
徐霖,谭伟,朱青霞,等. 材料保护, 2018, 51(5), 131.
55 Kawahara Y. Coatings, 2016, 6(3), 34.
56 Sun H H, Liu A G, Meng F L. Transactions of Materials and Heat Treatment, 2013, 34(S2), 96(in Chinese).
孙焕焕,刘爱国,孟凡玲. 材料热处理学报, 2013, 34(S2), 96.
57 Fan H P. Journal of Henan Science and Technology, 2018(8), 25(in Chinese).
范蕙萍.河南科技, 2018(8), 25.
58 Wang X J, Yang J. Corrosion & Protection, 2011, 32(8), 655(in Chinese).
王晓军,杨洁. 腐蚀与防护, 2011,32(8), 655.
59 Lu C F. Modern Manufacturing Technology and Equipment, 2019(12), 166(in Chinese).
卢常飞.现代制造技术与装备, 2019(12), 166.
60 Wu H L. Research on dioxin emission characteristics and key control technology of incinerator. Master’s Thesis, Zhejiang University, China, 2012(in Chinese).
吴海龙. 焚烧炉二恶英排放特性及关键控制技术研究. 硕士学位论文, 浙江大学, 2012.
61 Kathuria Y P. Surface & Coatings Technology, 2000, 132(2), 262.
62 Zhao Y X, Wang S G, Ye Q F, et al. Surface Technology, 2018, 47(1), 21(in Chinese).
赵雅萱,王少刚,叶庆丰,等. 表面技术, 2018, 47(1), 21.
63 Li G W, Liang H. Industrial Boiler, 2018(2), 51(in Chinese).
李广伟,梁华. 工业锅炉, 2018(2), 51.
64 Ye L, Ruan X Y, Hu H C, et al. Thermal Spray Technology, 2020, 12(1), 69(in Chinese).
叶林,阮新宇,胡海城,等.热喷涂技术, 2020, 12(1), 69.
65 Sidhu T S, Agrawal R D, Prakash S. Surface & Coatings Technology, 2005, 198(1), 441.
66 Hernas A, Imosa M, Formanek B, et al. Journal of Materials Processing Technology, 2004, 157, 348.
67 Yang S, Chen N, Liu W, et al. Surface & Coatings Technology, 2004, 183(2), 254.
68 Li X Z. Study on preparation and properties of the laser cladding Ni-Cr-Mo and Ni-Mo series coatings. Master’s Thesis, North China Electric Power University (Beijing), China, 2014(in Chinese).
李欣芷. Ni-Cr-Mo及Ni-Mo系熔覆层的制备及其特性研究. 硕士学位论文, 华北电力大学(北京), 2014.
69 Wang L, Zhou Z, Wang G H, et al. Thermal Spray Technology, 2017, 9(1), 1(in Chinese).
王利,周正,王国红,等. 热喷涂技术, 2017, 9(1), 1.
70 Zhao L P. Preparation and characterization of wear resistance and corrosion resistance cladding layers.Ph.D.Thesis, North China Electric Power University, China, 2012(in Chinese).
赵丽萍. 耐磨损、耐腐蚀熔覆层的制备及其特性研究.博士学位论文, 华北电力大学, 2012.
71 Lin H. China Environmental Protection Industry, 2019, 249(3), 43(in Chinese).
林欢.中国环保产业, 2019, 249(3), 43.
72 Cheng Y, Oleszek S, Shiota K, et al. Waste Management, 2020, 105, 575.
73 Xu M L, Yan J H, Ma Z Y, et al. Proceedings of the CSEE, 2007, 27(8), 16(in Chinese).
许明磊,严建华,马增益,等.中国电机工程学报, 2007, 27(8), 16.
74 Yan J H, Zhu H M, Jiang X G, et al. Journal of Zhejiang University (Enginee-ring Science), 2008, 42(10), 1812(in Chinese).
严建华,祝红梅,蒋旭光,等. 浙江大学学报(工学版), 2008, 42(10), 1812.
75 Feng T, Yan J H, Li X D, et al. Environmental Pollution & Control, 2011, 33(5), 40(in Chinese).
冯涛,严建华,李晓东,等. 环境污染与防治, 2011, 33(5), 40.
76 Yuan C, Lin H, Wu C, et al. Chemosphere, 2005, 59(1), 135.
77 Domingo J, Marques M, Mari M, et al. Environmental Research, 2020, 187, 109631.
78 Xu M L, Yan J H, Ma Z Y, et al. Proceedings of the CSEE, 2007, 27(23), 32(in Chinese).
许明磊,严建华,马增益,等.中国电机工程学报,2007,27(23),32.
79 Shao J M, Wang Z H, Lin F W, et al. Clean Coal Technology, 2020, 27(3), 211(in Chinese).
邵嘉铭,王智化,林法伟,等. 洁净煤技术, 2020, 27(3), 211.
80 Loethgren C, Bavel B V. Chemosphere, 2005, 61(3), 405.
81 Takaoka M, Liao P, Takeda N, et al. Chemosphere, 2003, 53(2), 153.
82 Zhang W B, Mei L T. Industrial Safety and Environmental Protection, 2008, 34(4), 40(in Chinese).
张文斌,梅连廷.工业安全与环保, 2008, 34(4), 40.
83 Li Y, Zhao Y J. Resources Economization & Environmental Protection, 2016, 164(2), 166(in Chinese).
李勇,赵彦杰. 资源节约与环保, 2016, 164(2), 166.
84 Wu Y F. Electric Power Environmental Protection, 2017, 33(2), 22(in Chinese).
吴曰丰.电力科技与环保, 2017, 33(2), 22.
85 Lin X, Ma Y, Chen Z, et al. Environmental Pollution, 2020, 265, 114888.
86 Li J. Technological Development of Enterprise, 2018, 37(9), 95(in Chinese).
李娟. 企业技术开发, 2018, 37(9), 95.
87 Hu Z, Jiang E, Ma X. Fuel, 2019, 245, 160.
88 Van Caneghem J, De Greef J, Block C, et al. Journal of Cleaner Production, 2016, 112, 4452.
89 Yu G Y, Xie X M, Hua Y L, et al. Guangzhou Chemical Industry, 2020, 48(14),125(in Chinese).
于杲旸,解晓明,华玉龙,等.广州化工, 2020, 48(14), 125.
90 Gohlke O, Weber T, Seguin P, et al. Waste Management, 2010, 30, 1348.
91 Goemans M, Clarysse P, Joannes J, et al. Chemosphere,2004,54,1357.
92 Gomez-Garcia M A, Pitchon V, Kiennemann A. Environment Internatio-nal, 2005, 31(3), 445.
93 Wang F. Resources Economization & Environmental Protection, 2018(5), 140(in Chinese).
王飞. 资源节约与环保, 2018(5), 140.
94 Pena D A, Uphade B S, Smirniotis P G. Journal of Catalysis, 2004, 221(2), 421.
95 Zhou H Q, Song X D, Tao X B, et al. Journal of Shanghai University of Electric Power, 2018, 34(3), 287(in Chinese).
周洪权,宋学顶,陶晓波,等.上海电力学院学报,2018,34(3),287.
96 Hyounduk J, Eunseuk P, Minsu K, et al. Waste Management,2017,61,283.
97 Wang S Z. Hi-Tech Fiber and Application,1999,24(6),12(in Chinese).
王曙中.高科技纤维与应用, 1999, 24(6), 12.
98 Deng H P. Huadian Technology, 2010, 32(11), 72(in Chinese).
邓辉鹏.华电技术, 2010, 32(11), 72.
99 Liu S H, Chen Y T, Feng H L. Science & Technology Information, 2009,31,890(in Chinese).
柳少华,陈延涛,冯会玲. 科技信息, 2009,31,890.
[1] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[2] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[3] 贾小东, 田琳, 高伟, 陈树江, 李国华. 基于酸浸法去除水泥窑用后砖中氯化钾的研究[J]. 材料导报, 2021, 35(11): 11034-11038.
[4] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[5] 毛燕东, 刘雷, 李克忠. 煤催化气化工艺中含碱灰渣对不同耐火材料的腐蚀性研究[J]. 材料导报, 2020, 34(20): 20061-20065.
[6] 徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
[7] 钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.
[8] 陈勇强,李红霞,刘国齐. 层状陶瓷及层状耐火材料研究进展[J]. 材料导报, 2019, 33(17): 2847-2853.
[9] 尹洪峰, 党娟灵, 辛亚楼, 高魁, 汤云, 袁蝴蝶. 轻量耐火材料的研究现状与发展趋势[J]. 材料导报, 2018, 32(15): 2618-2625.
[10] 王慧华, 徐英君, 蒋坤, 葛彬, 屈天鹏, 王德永. 外电场作用下熔渣对MgO-C耐火材料的侵蚀行为*[J]. 《材料导报》期刊社, 2017, 31(20): 96-100.
[11] 丁冬海, 杨少雨, 肖国庆. 含碳耐火材料酚醛树脂结合剂的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 95-100.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed