Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13155-13159    https://doi.org/10.11896/cldb.19060047
  金属与金属基复合材料 |
电弧喷涂耐海水腐蚀金属涂层的研究进展
徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超
扬州大学机械工程学院,扬州 225127
Research Progress on Arc Sprayed Metal Coatings for Seawater Corrosion Protection
XU Jinyong, WU Qingdan, WEI Xinlong, XIAO Jinkun, ZHANG Chao
School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
下载:  全 文 ( PDF ) ( 2604KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电弧喷涂金属涂层作为钢结构表面防护的一种重要措施,经过几十年的发展,已成为成熟的表面工程技术和产业。同时,随着新的喷涂工艺、设备和材料的不断研发,电弧喷涂金属涂层应用领域日益广泛。与此同时,使用电弧喷涂技术进行防腐的缺点也日益突出,尤其是喷涂过程中存在有害物质排放等问题,严重制约了其发展。电弧喷涂制备的涂层孔隙率低、微观组织致密、结合强度高且经济性好。相比于其他传统防腐技术,电弧喷涂金属涂层应用于钢结构的表面防护具有如下优势:(1)电弧喷涂沉积效率高、操作容易,便于现场施工;(2)涂层在海洋苛刻腐蚀环境中服役时间长。
然而,电弧喷涂耐海水腐蚀金属涂层的服役环境介质不同,对涂层的耐蚀性能提出了更高的要求。因此,近几十年来除研究电弧喷涂工艺参数外,科研工作者们着力研发多功能、高性能的喷涂材料,并取得了丰硕成果,同时充分利用电弧喷涂技术的优势可显著提高涂层的性能。目前电弧喷涂金属涂层材料正朝着复合化、新型化方向发展。
目前,用于钢结构表面防护且已取得广泛应用的喷涂材料有锌/铝及其合金、镍基合金、铁基合金和铜基合金等。其中锌、铝及其合金是使用最早且最广泛的喷涂材料;镍基合金可通过加入铬、钼等抗点蚀、缝隙腐蚀的合金元素,提高材料的耐蚀性能;铁基合金中添加少量Mo等元素, 能有效抑制晶界腐蚀发生;铜基合金中加入1%的锡,能抑制合金脱锌过程并提高其力学性能。近几年的研究重点为多种合金材料复合及新型合金材料的使用,以电弧喷涂技术为手段制备耐腐蚀涂层,可实现涂层功能和性能的双提升。
本文以分析钢结构在近海岸海洋环境各区域带的腐蚀规律为基础,比较了目前用于钢结构表面腐蚀防护的方法及其优缺点,阐述了电弧喷涂涂层的研究现状和防腐机理。从电弧喷涂耐海水腐蚀涂层的微观组织结构、涂层性能及防腐机理等方面,分析了电弧喷涂金属涂层防腐面临的问题并展望了其前景,以期为工业领域钢结构表面的长效防护提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐金勇
吴庆丹
魏新龙
肖金坤
张超
关键词:  电弧喷涂  海水腐蚀  腐蚀规律  腐蚀机理  腐蚀防护    
Abstract: Arc sprayed metal coating is an important method for the protection of steel structure. Due to development of last several decades, it has become a mature surface engineering technology and industry. Meanwhile, with the development and research of new spraying processes, equipment and materials, the application fields of it are increasingly widespread. At the same time, the shortcomings of arc spraying technology are becoming more and more prominent, especially the problems of harmful substances discharged during the spraying process, which seriously restricts its development. The coating prepared by arc spraying exhibits low porosity, compact microstructure, high bonding strength and good economy. Compared with other traditional anti-corrosion technologies, arc-sprayed metal coatings have the following advantages: (ⅰ) high efficiency of arc spray deposition, easy operation, and easy on-site construction; (ⅱ) the service life of the coatings is long.
However, the coatings fabricated by arc spraying technology are used in different service environments, which puts higher requirements on the corrosion resistance of the coating. Therefore, in addition to studying the parameters of arc spraying process in recent decades, researchers have focused on the development of multi-functional, high-performance spraying materials, and have achieved fruitful results. Basing on the advantages of arc spraying technology, the performance of coating will be enhanced significantly. At present, materials employed to deposited coatings are developing in the direction of composite and new-type.
Materials, such as Zn, Al and their alloys, Ni-based alloys, Fe-based alloys and Cu-based alloys, have been widely used in the protection of steel structures. Among them, Zn, Al and their alloys are the earliest and most used spraying materials; Ni-based alloys can improve the corrosion resistance of materials by adding Cr, Mo and other alloying elements, which are resistant to pitting and crevice corrosion; the addition of a small amount of Mo and other elements to the Fe-based alloy can effectively inhibit the occurrence of grain boundary corrosion; the incorporating of 1% Sn to the Cu-based alloy can inhibit the dezincification process of the alloy and improve the mechanical properties. Recently, the research focuses on the use of a variety of alloy materials and the use of new alloy materials, and the arc spray technology is used as a means to prepare corrosion-resistant coatings, which can achieve double improvement in the function and performance of coatings.
Based on the analysis of the corrosion law of steel structures in various areas of the coastal marine environment, this paper compares the current methods for corrosion protection of steel structures and their advantages and disadvantages. The research status and anti-corrosion mechanism of arc spray coatings are expounded. From the aspects of microstructure, coating properties and anti-corrosion mechanism of arc sprayed mental coatings, the problems of anticorrosion of arc sprayed metal coatings are analyzed and their prospects are prospected, and ultimately as a reference to provide long-term protection for steel structures in industrial fields.
Key words:  arc spray    seawater corrosion    corrosion law    corrosion mechanism    corrosion protection
                    发布日期:  2020-06-24
ZTFLH:  TG174.442  
基金资助: 江苏省海洋科技项目(HY2017-10);扬州市杰出青年基金(YZ2017096);扬州市-扬州大学市校合作基金(YZU201801)
通讯作者:  zhangc@yzu.edu.cn   
作者简介:  徐金勇,2018年6月毕业于上海应用技术大学,获得工学学士学位。现为扬州大学机械工程学院硕士研究生,在张超教授的指导下进行研究。目前主要研究领域为热喷涂金属基涂层。
张超,扬州大学机械工程学院教授、博士研究生导师。2003年7月本科毕业于重庆大学机械工程学院,2009年1月在西安交通大学材料加工工程专业取得博士学位,2009—2013年在比利时蒙斯大学工学院进行博士后研究工作。2014年1月回国后,先后入选第四批江苏省特聘教授计划、“扬州市十大杰出青年”提名奖。主要从事热喷涂功能与结构涂层的研究工作。近年来,在热喷涂功能与结构涂层领域发表论文70余篇,包括Journal of Coating Science and Technology、International Journal of Materials Science and Application、Surface & Coa-tings Technology、Journal of Thermal Spray Technology、Journal of Alloys & CompoundsCeramics International等。
引用本文:    
徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
XU Jinyong, WU Qingdan, WEI Xinlong, XIAO Jinkun, ZHANG Chao. Research Progress on Arc Sprayed Metal Coatings for Seawater Corrosion Protection. Materials Reports, 2020, 34(13): 13155-13159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060047  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13155
1 Yang Y X, Rob B, Brijan I, et al. Chemical Engineering & Processing Process Intensification, 2012, 51(1), 53.
2 Xu C, Zou W H, Yang Y M, et al. Journal of Natural Gas Geoscience, 2017, 28(8), 1139.
3 Sharma R. Marine Technology Society Journal, 2011, 45(5), 28.
4 Drach A, Tsukrov I, Decew J, et al. Corrosion Science, 2013, 76(10), 453.
5 Odhiambo J G, Zhang L, Liu T, et al. Applied Mechanics & Materials, 2014, 513-517, 189.
6 Atashin S, Toloei A S. Journal of Materials Engineering & Performance, 2013, 22(7), 2038.
7 Aspect I T, Tyron A. Journal of Mining, 2013, 2013(6), 1.
8 Moradi M, Song Z L, Yang L J, et al. Corrosion Science, 2014, 84(3), 103.
9 Ding R, Li W H, Wang X, et al. Journal of Alloys and Compounds, 2018, 764, 1039.
10 Gao X, Guo L Z, Xiong J B. Applied Mechanics and Materials, 2015, 744, 29.
11 Rodrigues L F, Tronco M C, Escobar C F, et al. Ceramics International, 2019, 45(12), 14806.
12 Kuang D, Cheng Y F. British Corrosion Journal, 2015, 50(3), 211.
13 Oryshchenk A S, Kuzmin Y L. Inorganic Materials Applied Research, 2015, 6(6), 612.
14 Bi F Q, Li H X, Sun Z X, et al. Materials Review A: Review Papers, 2014, 28(12). 51(in Chinese).
毕凤琴,李会星,孙振旭,等. 材料导报:综述篇,2014, 28(12), 51.
15 Kong D J, Dong X Q, Wang J C. Surface & Interface Analysis, 2015, 47(9), 911.
16 Sydeman W J, Thompson S A, Piatt J F, et al. Ecological Indicators, 2017, 78, 458.
17 Zhang L L, Ji Y S, Gao F R, et al. Construction and Building Materials, 2018, 180, 629.
18 Wang Y, Zhao X N, Dang X A, et al. Materials Review A: Review Papers, 2018, 32(11), 3805(in Chinese).
王瑶,赵雪妮,党新安,等.材料导报:综述篇,2018,32(11), 3805.
19 Liu J G, Li Z L, Li Y T, et al. Anti-corrosion Methods and Materials, 2016, 63(1), 56.
20 Zhang D Z, Gao X H, Su G Q, et al. Journal of Materials Engineering & Performance, 2017, 26(6), 2599.
21 UI-Hamid A, Saricimen H, Quddus A, et al. British Corrosion Journal, 2017, 52(2), 134.
22 Yang M K, Liu B, Xia J. Materials Review, 2018, 32(S2),298(in Chinese).
杨明坤,刘斌,夏杰.材料导报,2018,32(专辑32), 298.
23 Momber A W, Plagemann P, Stenzel V. Renewable Energy, 2015, 74, 606.
24 Hong-Bok C, Han-Seung L, Jun-Ho S et al. Materials, 2014, 7(12), 7722.
25 Yang H, Wang X S, Wang Y M, et al. Materials, 2017, 10(6), 609.
26 Park I C, Kim S J. Surface & Coatings Technology, 2017, 325, 729.
27 Wang Y, Jiang S L, Zheng Y G, et al. Surface & Coatings Technology, 2011, 206(6), 1307.
28 Liu M, Hu H X, Zheng Y G. Surface & Coatings Technology, 2017, 309, 579.
29 Xu L, Liu F C, Han E H, et al. Progress in Organic Coatings, 2019, 132, 305.
30 Zhang B, Wang B, Guo X W, et al. Nature Communications, 2018, 9(1), 2559.
31 Sugimura S, Liao J. Surface & Coatings Technology, 2016, 302, 398.
32 Rasoul R L, Hadi S, Fateme A, et al. Progress in Organic Coatings, 2019, 127, 300.
33 Liu G C, Sun Wen, Wang L, et al. Materials & Corrosion, 2014, 64(6), 472.
34 Feng T, Wu J Y, Chai K, et al. Journal of Molecular Liquids, 2018, 263, 248.
35 Kaneko F, Nagasaka H. Surface Engineering, 2014, 6(2), 125.
36 Chang J K, Lin C S, Wang W R. Surface & Coatings Technology, 2018, 350, 880.
37 Su F, Zhang P, Wei D, et al. Materials & Corrosion, 2018, 69(6), 714.
38 Robson J D, Paarai C. Acta Materialia, 2015, 95, 10.
39 Lu F, Xie Z Q, Lu Y F, et al. Advanced Materials Research, 2013, 804, 79.
40 Jiang Q, Miao Q, Tong F, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(8), 2713.
41 Sugimura S, Liao J. Surface & Coatings Technology, 2016, 302, 398.
42 Li K, Liu Y, Tu H, et al. Surface & Coatings Technology, 2016, 306, 390.
43 Chen Z, Peng C T, Liu Q, et al. Journal of Alloys and Compounds, 2014, 589(9), 226.
44 Tong H, Wei S C, Liu Y, et al. Rare Metal Materials and Engineering, 2016, 45(11), 2918(in Chinese).
童辉,魏世丞, 刘毅, 等.稀有金属材料与工程, 2016,45(11), 2918.
45 Sun H, Zhang P, Wang J P. Corrosion Science, 2018, 143, 187.
46 Heubner U, Rockel M, Wallis E. Materials & Corrosion, 2015, 40(7), 418.
47 Wang S H, Guo X W, Yang H Y, et al. Applied Surface Science, 2014, 288(1), 530.
48 Xu X, Mi G Y, Xiong L D, et al. Journal of Alloys and Compounds, 2018, 740, 16.
49 Xia M, Lei T, Lv N L, et al. International Journal of Hydrogen Energy, 2014, 39(10), 4794.
50 Wang Q Y, Wang X Z, Luo H, et al. Surface & Coatings Technology, 2016, 291, 250.
51 Bagherzadeh M, Jaberinia F. Journal of Alloys and Compounds, 2018, 750, 677.
52 Fashu S, Gu C D, Wang X L, et al. Surface & Coatings Technology, 2014, 242, 34.
53 Meng X J, Shi X, Zhong Q D, et al. Journal of Materials Engineering & Performance, 2016, 25(11), 4735.
54 Hart A C. British Corrosion Journal, 2013, 7(3), 105.
55 Aliya B, Wynter J, Helena, S, et al. Materials Science and Engineering:C, 2018, 93, 1073.
56 Cheng X W, Jiang Z Y, Wei D B, et al. Tribology International, 2015, 84, 61.
57 Loto R T, Loto C A, Popoola A P, et al. Silicon, 2016, 8(1), 145.
58 Mindivan F, Mindivan H. Advances in Materials & Processing Technologies, 2016, 2(4), 514.
59 Zois D, Lekatou A, Vardavoulias M. Journal of Alloys and Compounds, 2010, 504(8), S283.
60 Terada M, Padilha A F, Simoes A M P, et al. Materials & Corrosion, 2015, 60(11), 889.
61 Villaret V, Deschaux-Beaume F, Bordreuil C, et al. Journal of Materials Processing Technology, 2013, 213(9), 1538.
62 Antunes R A, Rodas A C D, Lima N B, et al. Surface & Coatings Technology, 2010, 205(7), 2074.
63 Tao H M, Zhou C S, Zheng Y, et al. Corrosion Science, 2019, 154, 268.
64 Zeng Z, Sakoda N, Tajiri T. Journal of Thermal Spray Technology, 2006, 15(3), 431.
65 Wang D Z, Li P, Kang K, et al. Surface & Coatings Technology, 2016, 300, 128.
66 Wang Z H, Zhang X, Cheng J B, et al. Journal of Thermal Spray Technology, 2014, 23(4), 742.
67 Pardo A, Merino M C, Coy A E, et, al. Corrosion Science, 2008, 50 (6), 1796.
68 Man C, Dong C F, Kong D C, et al. Corrosion Science, 2019, 151, 108.
69 Zhang X, Zhang Y, Wu Y D, et al. Journal of Materials Research and Technology, 2019, 8(3), 2649.
70 Willian R, Bruna C, Dair G, et al. Applied Surface Science, 2018, 434, 1161.
71 Horvath B, Shinohara T, Illes B. Journal of Alloys and Compounds, 2013, 577(30), 439.
72 Pavan A S, Ramanan S R. Electroplating & Finishing, 2015, 6(8), 1175.
73 Rosley R, Jikan S, Badarulzaman N A. Materials Science Forum, 2017, 888, 400.
74 Kong D C, Dong C F, Ni X Q, et al. Applied Surface Science, 2018, 455, 543.
75 Liu J K, Su X Y. Surface Technology, 2016, 45(9), 134(in Chinese).
刘基凯, 苏新勇. 表面技术, 2016, 45(9), 134.
76 Hauer M, Henkel K M, Krebs S, et al. Journal of Thermal Spray Technology, 2016, 26(1), 217.
77 Duan Z G, Yang H L, Kano S, et al. Surface & Coating Technology, 2018, 334, 319.
78 Cheng B, Kim Y J, Chou P. Nuclear Engineering & Technology, 2016, 48(1), 16.
79 Yang W, Xu D P, Wang J L, et al. Corrosion Science, 2018, 136, 174.
80 Sun B, Cheng J B, Liu Q, et al. Materials Review B: Research Papers, 2018, 32(12), 1978(in Chinese).
孙博, 程江波, 刘奇, 等.材料导报:研究篇,2018, 32(12), 1978.
81 Fang L J, Huang J, Liu Y, et al. Surface & Coatings Technology, 2019, 357, 794.
[1] 曹琛, 郑山锁, 胡卫兵, 张晓辉, 刘毅. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.
[2] 周治文, 江旭东, 黄朴, 陈孝阳, 韦德满, 许征兵. 高速电弧喷涂FeAlCrTiC涂层组织结构及耐磨、耐腐蚀性能[J]. 材料导报, 2019, 33(16): 2771-2776.
[3] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[4] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[5] 孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
[6] 刘长赛,王玉江,盛忠起,魏世丞,梁义,李岳彬,王博. 曲轴维修与再制造现状与展望[J]. 《材料导报》期刊社, 2018, 32(1): 141-148.
[7] 秦建伟, 罗丽珠, 帅茂兵. 金属铀的水蒸气腐蚀行为研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 17-24.
[8] 梁义,王博,魏世丞,郭蕾,王玉江,刘文超. 海洋浪溅区Zn涂层加速腐蚀实验模拟研究*[J]. 材料导报编辑部, 2017, 31(10): 51-55.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed