Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2618-2625    https://doi.org/10.11896/j.issn.1005-023X.2018.15.012
  无机非金属及其复合材料 |
轻量耐火材料的研究现状与发展趋势
尹洪峰, 党娟灵, 辛亚楼, 高魁, 汤云, 袁蝴蝶
西安建筑科技大学材料与矿资学院,西安 710055
Research Status and Development Trend of Lightweight Refractories
YIN Hongfeng, DANG Juanling, XIN Yalou, GAO Kui, TANG Yun, YUAN Hudie
College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 2553KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 耐火材料作为高温窑炉的内衬,对其节能降耗起着至关重要的作用。陶瓷行业中,使用轻质隔热材料砌筑的窑炉和窑车具有较好的节能效果,且实现了快速烧成。但对于工作衬与金属液、熔渣直接接触或与物料间有侵损反应的窑炉,要求工作衬致密度较高,以保证窑炉具有较好的抗侵蚀性能和长的使用寿命,这导致该类窑炉热容量大、热耗散大,热效率较低。高温窑炉工作衬用耐火材料一般由致密骨料和基质组成(熔铸耐火材料除外),骨料相对致密,而基质较为疏松。通常侵蚀和损毁首先从基质开始,无论骨料是否损毁都会因变质层热物理性能变化而发生剥落,造成材料整体损毁,故重质骨料适当轻量化应该不会大幅降低耐火材料的强度和抗介质侵蚀性能。
轻量耐火材料是指引入具有较高气孔率(尤其是闭气孔率)的骨料代替致密骨料,制备的致密度介于轻质和重质耐火材料之间的一类耐火材料,它的开发旨在不严重影响耐火材料高温使用性能的前提下,通过降低耐火材料的热容量和导热系数达到保温隔热、节能降耗的目的。基于上述原因,轻量骨料对轻量耐火材料的制备工艺过程、显微结构和使用性能具有决定性的影响。
本文首先介绍了轻量耐火骨料的制备方法、材料体系和相关性能,包括部分烧结法、造孔剂烧失法、反应物原位分解造孔法、发泡法、引入纳米粒子烧结法、放电等离子体烧结法等。进而给出轻量骨料在耐火浇注料、不烧含碳耐火材料以及烧成定形制品中的应用、相关性能和使用效果。已有研究发现,在制备轻量骨料的过程中,在追求降低其热导率和体积密度的同时,很难获得令人满意的显气孔率和吸水率,该矛盾成为目前轻量耐火材料获得广泛推广和使用的技术瓶颈。文章还介绍了氧化镁碳热还原输运氧化结合反应烧结的方法,其无需制备轻量骨料,即可获得外层致密内部多孔的具有密度梯度的刚玉-尖晶石轻量耐火材料。文末围绕轻量耐火材料从轻量骨料的制备、轻量耐火材料的制备技术、使用效果评价以及标准和规范制订等方面对今后的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹洪峰
党娟灵
辛亚楼
高魁
汤云
袁蝴蝶
关键词:  轻量耐火材料  骨料  浇注料  低导热率  密度梯度    
Abstract: Refractory, as a high-temperature furnace lining, exerts a crucial role for energy saving in industry. The ceramic industry already have gained a better energy-saving and rapid firing by means of building lightweight kiln and kiln car with light insulating material. However, the furnaces, in which working lining contacts or even reacts with the molten metal, slag, raw materials or intermediate products, require a higher density so as to ensure better corrosion resistance and longer service life, and in consequence, often have large heat capacity, high energy consumption and low thermal efficiency. Working lining refractory used in high-temperature furnaces usually consists of aggregate and matrix (except casting refractories), and aggregate has a high density while the matrix is relatively loose and more vulnerable to slag attack. With the change of thermal physical properties, the metamorphic layer will be spalled, whether the aggregate is damaged or not. Thus properly lightweight aggregates should not significantly reduce the strength or anti-media erosion resistance of refractory.
Lightweight refractories refer to a class of refractories with density between light and heavy refractories. In this kind of refractories, aggregates with higher porosity (especially closed porosity) substitute for dense aggregates. Under the premise of retaining high-temperature performance, the use of lightweight refractories with lower heat capacity and thermal conductivity can achieve the purpose of thermal insulation and energy saving. Therefore, lightweight aggregates have a dominant impact on the preparation process, microstructure and performance of lightweight refractory.
In this paper, material systems, related properties and the preparation methods of lightweight refractory aggregate are summarized, including partial sintering method, sintering agent loss by pore-forming agent, in situ decomposition pore-forming technique, foaming method, nanoparticle-assisted sintering method, discharge plasma sintering method and so on. And then it reviews the application of lightweight aggregates, the related performance and the effectiveness in refractory castable, unburned carbon-containing refractories and fired shaped products. However, research has revealed the difficulty to obtain satisfactorily low apparent porosity and water absorption while pursuing reduction of aggregate’s thermal conductivity and bulk density in the preparation of lightweight aggregates, which has become an obstacle to the popularization of lightweight refractory. We also delineate a combinatorial method of carbo-thermal reduction, transporting oxidation, combined with reactive sintering method, which dispenses with the preparation of lightweight aggregates and is capable of producing corundum-spinel lightweight refractory with density gradient. Finally, the paper sketches out the future prospect for the research of lightweight refractory, from the perspectives of the fabrication of lightweight aggregate, as well as processing techniques, performance evaluation, standards and specifications of lightweight refractories.
Key words:  lightweight refractory    aggregate    castable    lower thermal conductivity    density gradient
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TB35  
基金资助: 国家自然科学基金(51572213)
作者简介:  尹洪峰:男,1965年生,教授,博士研究生导师,主要从事耐火材料、功能复合材料以及固体废弃物综合利用研究 E-mail:yinhongfeng@xauat.edu.cn
引用本文:    
尹洪峰, 党娟灵, 辛亚楼, 高魁, 汤云, 袁蝴蝶. 轻量耐火材料的研究现状与发展趋势[J]. 材料导报, 2018, 32(15): 2618-2625.
YIN Hongfeng, DANG Juanling, XIN Yalou, GAO Kui, TANG Yun, YUAN Hudie. Research Status and Development Trend of Lightweight Refractories. Materials Reports, 2018, 32(15): 2618-2625.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.012  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2618
1 李楠,顾华志,赵慧忠.耐火材料学[M].北京:冶金工业出版社,2010.
2 Du B, Gu H Z, Li Z K, et al. Effect of different Al2O3 on microstructure and properties of lightweight microporous corundum aggregates[J].Journal of Wuhan University of Science and Technology,2012,35(5):377(in Chinese).
杜博,顾华志,李正坤,等.不同氧化铝对轻量微孔刚玉骨料结构与性能的影响[J].武汉科技大学学报,2012,35(5):377.
3 Deng Z Y, Yang J F, Beppu Y, et al. Effect of agglomeration on mechanical properties of porous zirconia fabricated by partial sintering[J].Journal of the American Ceramic Society,2002,85(5):1961.
4 Nanjangud S C, Brezny R, Green D. Strength and Young’s modulus behavior of a partially sintered porous alumina[J].Journal of the American Ceramic Society,1995,78(1):266.
5 Liu R P, Wang C A. Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics[J].Journal of the European Ceramic Society,2013,33:1859.
6 Dele-Afolabi T T, Azmah Hanim M A, Norkhairunnisa M, et al. Investigating the effect of porosity level and pore former type on the mechanical and corrosion resistance properties of agro-waste shaped porous alumina ceramics[J].Ceramics International,2017,43:8743.
7 Mohanta K, Kumar A, Parkash O, et al. Low cost porous alumina with tailored microstructure and thermal conductivity prepared using rice husk and sucrose[J].Journal of the American Ceramic Society,2014,97(6):1708.
8 Sandoval M L, Talou M H, Martinez A G T, et al. Mechanical testing of cordierite porous ceramics using high temperature diametral compression[J].Journal of Materials Science,2010,45(18):5109.
9 Pabst W, Gregorová E, Sedlárová I, et al. Preparation and characterization of porous alumina-zirconia composite ceramics[J].Journal of the European Ceramic Society,2011,31:2721.
10 Isobe Toshihiro, Kameshima Yoshikazu, Nakajima Akira, et al. Preparation and properties of porous alumina ceramics with uni-directionally oriented pores by extrusion method using a plastic substance as a pore former[J].Journal of the European Ceramic Society,2007,27:61.
11 Isobe Toshihiro, Tomita Takahiro, Kameshima Yoshikazu, et al. Preparation and properties of porous alumina ceramics with oriented cylindrical pores produced by an extrusion method[J].Journal of the European Ceramic Society,2006,26:957.
12 Isobe Toshihiro, Kameshima Yoshikazu, Nakajima Akira, et al. Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores[J].Journal of the European Ceramic Society,2006,26:2213.
13 Deng Z Y, Fukasawa T, Ando M. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide[J].Journal of the American Ceramic Society,2001,84(11):2638.
14 Suzuki Yoshikazu, Kondo Naoki, Ohji Tatsuki. Reactive synthesis of a porous calcium zirconate/spinel composite with idiomorphic spinel grains[J].Journal of the American Ceramic Society,2003,86(7):1128.
15 Salomão R, Ferreira V L, Oliveira I R D, et al. Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates[J].Journal of the European Ceramic Society,2016,36:4225.
16 Chen Huan, Zhao Lei, He Xuan, et al. The fabrication of porous corundum spheres with core-shell structure for corundum-spinel castables[J].Materials and Design,2015,85:574.
17 Ahmad Rizwan, Ha Jang-Hoon, Song In-Hyuck. Enhancement of the compressive strength of highly porous Al2O3 foam through crack healing and improvement of the surface condition by dip-coating[J].Ceramics International,2014,40:3679.
18 Honeyman-Colvin P, Lange F F. Infiltration of porous alumina bodies with solution precursors: Strengthening via compositional grading, grain size control, and transformation toughening[J].Journal of the American Ceramic Society,1996,79(7):1810.
19 Fu Lvping, Huang Ao, Gu Huazhi, et al. Effect of nano-alumina sol on the sintering properties and microstructure of microporous corundum[J].Materials and Design,2016,89:21.
20 Fu Lvping, Gu Huazhi, Huang Ao, et al. Effect of MgO micropowder on sintering properties and microstructures of microporous corundum aggregates[J].Ceramics International,2015,41:5857.
21 Fu Lvping, Huang Ao, Gu Huazhi, et al. Fabrication and characte-rization of lightweight microporous alumina with guaranteed slag resistance[J].Ceramics International,2016,42:8724.
22 Perko Sebastjan, Dakskoblerand Ales, Kosmac Tomaz. High-performance porous nanostructured ceramics[J].Journal of the American Ceramic Society,2010,93(9):2499.
23 Dakskobler Aleš, Kocjan Andraz, Kosmac Tomaz. Porous alumina ceramics prepared by the hydrolysis-assisted solidification method[J].Journal of the American Ceramic Society,2011,94(5):1374.
24 Fujita H, Lev C G, Zok F W, et al. Controlling mechanical properties of porous mullite/alumina mixtures via precursor-derived alumina[J].Journal of the American Ceramic Society,2005,88(2):367.
25 Kocjanand Andrãz, Shen Zhijian. Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities[J].Journal of the European Ceramic Society,2013,33:3165.
26 Oh Sung-Tag, Tajima Ken-Ichi, Ando Motohide, et al. Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing[J].Journal of the American Ceramic Society,2000,83(5):1314.
27 Chakravarty D, Ramesh H, Rao T N. High strength porous alumina by spark plasma sintering[J].Journal of the European Ceramic Society,2009,29(8):1361.
28 Matsumoto H, Ohta S, Ohba J. Influence of pore structure and chemical composition on slag resistance of alumina aggregates[J].Refractories,2009,61(12):640.
29 Yan Wen, Li Nan, Han Bingqiang. Influence of microsilica content on the slag resistance of castables containing porous corundum-spinel aggregates[J].International Journal of Applied Ceramic Technology,2008,5(6):633.
30 Liang Yonghe, Huang Ao, Zhu Xinwei. Dynamic slag/refractory interaction of lightweight Al2O3-MgO castable for refining ladle[J].Ceramics International,2105,41:8149.
31 Fu Lvping, Gu Huazhi, Huang Ao, et al. Possible improvements of alumina-magnesia castable by lightweight microporous aggregates[J].Ceramics International,2015,41:1263.
32 Zou Yang, Huang Ao, Gu Huazhi, et al. Effects of particle distribution of matrix on microstructure and slag resistance of lightweight Al2O3-MgO castables[J].Ceramics International,2016,42:1964.
33 Zou Yang, Gu Huazhi, Huang Ao, et al. An approach for matrix densification based on particle packing and its effect on lightweight Al2O3-MgO castables[J].Ceramics International,2016,42:18560.
34 Liu Guangping, Jin Xuejun, Qiu Wendong, et al. The impact of bonite aggregate on the properties of lightweight cement-bonded bonite-alumina-spinel refractory castables[J].Ceramics International,2016,42:4941.
35 Tomiya Hisashi, Takisawa Tomoaki, Tada Hidenori. Low thermal conductivity Al2O3-MgO-C bricks for steel ladle[J].Refractories,2010,62(1):34.
36 Peng C H, Li N, Han B Q. Study on slag corrosion resistance of microporous magnesia-spinel carbon refractories[J].Bulletin of the Chinese Ceramic Society,2009,28(2):307(in Chinese).
彭从华,李楠,韩兵强.微孔镁尖晶石碳耐火材料的抗渣性能研究[J].硅酸盐通报,2009,28(2):307.
37 Imai K, Takada T. Development of low thermal conductive basic brick for transition zone of cement rotary kiln[J].Refractories,2009,61(5):231.
38 Ren Bo, Li Yawei, Sang Shaobai, et al. Lightweight design of bau-xite-SiC composite refractories as the lining of rotary cement kiln using alternative fuels[J].Ceramics International,2017,43:11048.
39 Lin Xiaoli, Yan Wen, Ma Sanbao, et al. Corrosion and adherence properties of cement clinker on porous periclase spinel refractory aggregates with varying spinel content[J].Ceramics International,2017,43:4984.
40 尹洪峰,辛亚楼,党娟灵,等.刚玉-尖晶石轻量耐火材料的制备与性能[C]∥《耐火材料》创刊50周年和《China’s Refractories》创刊25周年典暨行业技术发展研讨会.洛阳,2016:105.
[1] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[2] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[3] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19): 3387-3393.
[4] 胡俊, 王杰, 李兆瑞, 吴德义. 基于随机骨料模型的EPS混凝土粒子尺寸效应分析[J]. 材料导报, 2018, 32(18): 3146-3153.
[5] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[6] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[7] 肖柏林, 杨志强, 高谦, 郭晓东. 混合骨料堆积模型研究与新型模型建立[J]. 《材料导报》期刊社, 2018, 32(14): 2400-2406.
[8] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[9] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[10] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[11] 张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析*[J]. 《材料导报》期刊社, 2017, 31(20): 124-128.
[12] 王奕仁, 王栋民. 骨料种类与品质对透水混凝土性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 98-105.
[13] 毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
[14] 刘志芳, 刘新红, 黄亚磊, 顾强, 文钰斌. 铝粉表面包覆改性的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 73-79.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed