Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14035-14039    https://doi.org/10.11896/cldb.20040132
  无机非金属及其复合材料 |
除氢材料在高真空多层绝热设备中维持高真空行为研究
于洋1,2, 朱鸣2,*, 陈叔平1,*, 古纯霖2, 张波2, 黄宇巍3
1 兰州理工大学石油化工学院,兰州 730050
2 中国特种设备检测研究院,北京 100029
3 郑州轻工业大学能源与动力工程学院,郑州 450001
Research on Maintaining High Vacuum in High Vacuum Multilayer Insulation Equipment of Hydrogen Getters
YU Yang1, ZHU Ming2,*, CHEN Shuping1,*, GU Chunlin2, ZHANG Bo2, HUANG Yuwei3
1 College of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
2 China Special Equipment Inspection and Research Institute, Beijing 100029, China
3 College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 2113KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高真空多层绝热低温设备夹层内的绝热材料及金属材料会向真空夹层内释放出氢气,导致绝热真空恶化,严重影响设备的绝热性能。本工作搭建了吸氢材料吸气性能测试实验装置,通过测量已知夹层体积内真空度随时间的变化,对比分析了Ag-Z型银吸气剂和高效催化除氢剂(ECG)的吸气性能,并获得了两种吸氢材料的吸附等温曲线。研究表明,两种吸氢材料的吸附过程均符合BDDT理论中的第一种类型,即Langmuir吸附。本实验采用定容法测得Ag-Z型银吸气剂累计吸气量为63.084 mL/g,平均吸气速率为0.132 mL/(g·h)。ECG累计吸气量为366.276 mL/g,平均吸气速率为1.353 mL/(g·h),分别是Ag-Z型银吸气剂的5.81倍和10.25倍。两组实验中平均吸气速率均随着加注氢气初始压力的升高而先增加后降低。两种除氢材料最大吸附速率均发生在第一次加氢初始阶段,平衡压力均随加注氢气的初始压力增大而升高。实验结果为两类吸氢材料在低温设备储运行业的应用提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于洋
朱鸣
陈叔平
古纯霖
张波
黄宇巍
关键词:  高真空多层绝热  吸氢材料  吸气性能  绝热性能  高效催化除氢剂(ECG)  Ag-Z型银吸气剂  吸附等温曲线    
Abstract: The insulation materials and metal materials in high vacuum multilayer insulation cryogenic equipment released hydrogen into the interlayer for a long time, which led to the deterioration of the insulation vacuum and seriously affect the insulation performance of the container. In this paper, an experimental device was set up through testing the change of vacuum degree, then compared the adsorption performance of Ag-Z getter and high efficiency composite hydrogen getter(ECG). The adsorption isotherm curves of hydrogen getters were obtained. The research defined that the adsorption process of hydrogen getters accords with the first type of BDDT theory, namely Langmuir adsorption. The cumulative insulation capacity of Ag-Z getter was 63.084 mL/g, and the average adsorption rate was 0.132 mL/(g·h). And ECG was 366.276 mL/g and 1.353 mL/(g·h), which was 5.81 times and 10.25 times of Ag-Z getter, respectively. Moreover, with the increased of initial H2 pressure the average adsorption rate of each group increased and then decreased. The maximum adsorption rate of the two hydrogen getters occurred in the first hydrogenation, and the equilibrium pressure of the hydrogen getters increased with the initial pressure of H2. The experimental results provi-ded a basis for the application of two kinds of hydrogen getters in cryogenic equipment and transportation industry.
Key words:  high vacuum multi-layer insulation    hydrogen absorption material    inspiratory performance    heat-insulating property    efficient catalytic hydrogen getter (ECG)    Ag-Z getter    adsorption isotherm curve
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  O643  
  TQ424  
基金资助: 国家重点研发计划项目(2017YFC0805601)
通讯作者:  * jsdypczm@126.com;chensp@lut.cn   
作者简介:  于洋,兰州理工大学硕士研究生,研究方向为多类型吸氢剂在高真空多层绝热设备中维持高真空性能研究,发表论文5篇;申请专利4项;全国第七届过程装备与实践大赛二等奖;中国大学生机械工程创新创意大赛“卓然杯”二等奖;第五届中国“互联网+”大学生创新创业大赛甘肃赛区银奖;中国大学生机械工程创新创意大赛三等奖;研究生一等奖学金(全校10%比例)。
朱鸣,高级工程师,就职于中国特种设备检测研究院。2007年9月至2012年3月在上海交通大学获得制冷及低温工程专业工学博士学位,毕业后进入中国特种设备检测研究院博士后工作站进行博士后工作站研究。以第一作者在国内外学术期刊上发表论文10余篇。研究工作主要围绕国家重点发展的氢能源低温液氢储运容器,开展关于低温容器性能提升及结构安全可靠性的基础理论和应用研究,主持市场监管总局科技计划项目,承担国家十三五重点研发专项课题任务等。
陈叔平,兰州理工大学教授,博士研究生导师。长期从事低温贮运技术与设备、低温传热技术、LNG技术、真空检漏技术等方面的科研工作。承担国家863计划项目、甘肃省科技重大专项、国家自然科学基金项目及企业合作项目60多项;获省部级、厅局级科技奖励5项,兼任兰州理工大学教授咨询委员会委员,兰州510所真空低温技术与物理国家级重点实验室学术委员会委员,全国锅炉压力容器标准化技术委员会低温容器工作组成员。在Cryogenics、Journal of Aerospace Engineering、《化工学报》等国内外权威期刊发表论文80多篇。科研成果获甘肃省科技进步二等奖、优秀新产品新技术成果二等奖、国家机械工业科技三等奖。
引用本文:    
于洋, 朱鸣, 陈叔平, 古纯霖, 张波, 黄宇巍. 除氢材料在高真空多层绝热设备中维持高真空行为研究[J]. 材料导报, 2021, 35(14): 14035-14039.
YU Yang, ZHU Ming, CHEN Shuping, GU Chunlin, ZHANG Bo, HUANG Yuwei. Research on Maintaining High Vacuum in High Vacuum Multilayer Insulation Equipment of Hydrogen Getters. Materials Reports, 2021, 35(14): 14035-14039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040132  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14035
1 Rosa E C, Kenneth D S, Donald F. Getters Cowgill Journal of Vacuum Science & Technology,2014,32(6),60.
2 Choi J, Pan L, Zhang F, et al. Surface Science,2015,640,150.
3 Fu X L.Cryogenics,1994(1),11(in Chinese).
符锡理.低温工程,1994(1),11.
4 Xie S W, Deng D, Wang R S. Chinese Journal of Vacuum Science and Technology,2013,33(6),547(in Chinese).
谢斯卫,邓冬,汪荣顺.真空科学与技术学报,2013,33(6),547.
5 Chen S J, Wang R S, Wei W,et al. Chinese Journal of Vacuum Science and Technology,2009(4),100(in Chinese).
陈树军,汪荣顺,魏蔚,等.真空科学与技术学报, 2009(4),100.
6 Yu Y, Chen S P, Zhu M, et al. Chinese Journal of Vacuum Science and Technology,2020,40(4),313(in Chinese).
于洋,陈叔平,朱鸣,等.真空科学与技术学报, 2020,40(4),313.
7 Zhou C, Li D T, Zhou H, et al. Materials Reports A: Review Papers,2019,33(2),438(in Chinese).
周超,李得天,周晖,等.材料导报:综述篇, 2019,33(2),438.
8 Belousov V M,Vasylyev M A, Lyashenko L V, et al. Chemical Enginee-ring Journal,2003,91,143.
9 Zeng Y W. Study on the hydrogen absorption characteristics of the oxidation treatment in high vacuum multilayer adiabatic structures. Master's Thesis, Shanghai Jiao Tong University, China,2009(in Chinese).
曾宇梧.一氧化把在高真空多层绝热结构中的吸氢特性研究.硕士论文,上海交通大学,2009.
10 Wang J, Zhan Y, Wei W, et al. Vacuum,2016,131,44.
11 Wang J, Zhan Y, Wang W, et al. Vacuum,2018,49,87.
12 Xie S W. Study on the characteristics of getter in high-vacuum multilayer insulated cryogenic container. Master's Thesis, Shanghai Jiao Tong University, China,2009(in Chinese).
谢斯卫.高真空多层绝热低温容器内吸气剂的吸气特性研究.硕士学位论文,上海交通大学,2013.
13 Wang X J, Xie Y B, Ning P, et al. Materials Reports A: Review Papers, 2018,32(12),4089(in Chinese).
王学谦,谢怡冰,宁平,等.材料导报:综述篇,2018,32(12),4089.
14 Yan Y Y, Wang Q, Huang Z, et al. Journal of Atomic and Molecular Physics,2014,31(5),701(in Chinese).
闫跃阳,王茜,黄整,等.原子与分子物理学报, 2014,31(5),701.
15 Wang F, Zhou W M, Luo X M, et al. Performance test method of vacuum insulation cryogenic equipment, China Standards Press, China, 2011(in Chinese).
王芳,周伟明,罗晓明,等.真空绝热深冷设备性能实验方法,中国标准出版社,2011.
16 Zhao J G. Application of adsorption, Chemical Industry Press, China,2005(in Chinese).
赵继国.吸附作用应用原理,化学工业出版社,2005.
17 Lowell S, Shields J E, Morral J E. Journal of Engineering Materials and Technology,1985,107(2),180.
18 Liu Q S, Zheng T, Wang P, et al. Chemical Engineering Journal,2010,157(23),352.
19 Wang X, An L P, Zhang X T, et al. Materials Reports A: Review Papers, 2018,32(1),93(in Chinese).
王霞,安丽平,张晓涛,等.材料导报:综述篇, 2018,32(1),93.
20 Da D A, Xiao X Z, Liu Y K, et al. Vacuum design manual, National Defense Science and Technology Press, China,2006(in Chinese).
达道安,肖祥正,刘玉魁,等.真空设计手册,国防科技出版社,2006.
[1] 刘明浩, 宋武林, 卢照, 李明辉. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114.
[2] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[3] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[4] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[5] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[6] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[7] 翟佳欣, 李国华, 甘思平, 胡恩言, 张晓蕊. Mo掺杂对CuCo/BNNSs纳米复合材料催化氨硼烷水解活性的影响[J]. 材料导报, 2020, 34(16): 16031-16036.
[8] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[9] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[10] 林思宇, 曾春梅. 助催化剂NiCoP修饰改性增强半导体TiO2的光催化性能[J]. 材料导报, 2019, 33(24): 4046-4050.
[11] 王红琴, 谢继阳, 安霓虹, 戴云生, 唐春, 刘俊, 沈亚峰, 周伟. 钌基催化剂催化苯部分加氢制环己烯的研究进展[J]. 材料导报, 2019, 33(23): 4016-4024.
[12] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[13] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[14] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[15] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed