Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 4016-4024    https://doi.org/10.11896/cldb.18070187
  高分子与聚合物基复合材料 |
钌基催化剂催化苯部分加氢制环己烯的研究进展
王红琴, 谢继阳, 安霓虹, 戴云生, 唐春, 刘俊, 沈亚峰, 周伟
昆明贵金属研究所,贵研铂业股份有限公司,稀贵金属综合利用新技术国家重点实验室,昆明 650106
Advances in the Ruthenium Catalysts for Partial Hydrogenation of Benzene toCyclohexene
WANG Hongqin, XIE Jiyang, AN Nihong, DAI Yunsheng, TANG Chun, LIU Jun, SHEN Yafeng, ZHOU Wei
State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinum Metals Co. Ltd., Kunming Institute of Precious Metals, Kunming 650106
下载:  全 文 ( PDF ) ( 1483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环己烯具有活泼的双键,被广泛用于医药、农药、食品及其他高附加值精细化学品的生产中。工业上生产环己烯的方法主要有环己烷脱氢、环己醇脱水、卤代环己烷脱卤化氢、Birch还原和苯部分加氢等。相比于其他方法,苯部分加氢制环己烯工艺由于具有安全可靠、原子经济性强、环境友好等优点,引起了研究者的广泛关注。
从热力学角度看,苯加氢生成环己烯的标准Gibbs自由能比生成环己烷的标准Gibbs自由能低75 kJ/mol,极不利于环己烯的生成。另外,苯环共轭大π键的化学性质较环己烯双键更稳定,在催化剂存在下环己烯极易深度加氢生成环己烷,反应难以停留在环己烯阶段。除引入水相外,催化剂是实现苯部分加氢制备环己烯工艺过程的关键,因此开发高活性、高选择性的催化剂显得格外重要。
100多年前人们就开始探索苯部分加氢制环己烯工艺。自1957年Anderson在Ni膜催化苯加氢产物中检测到环己烯的存在以来,一些研究者陆续报道了钌催化剂催化的苯加氢反应,在苯转化率较低的情况下能检测到中间产物环己烯,并发现钌催化剂最适合该反应。其中,一项极为重要的研究进展是在含油相、水相、气相和固相的四相反应体系中,以过渡金属盐为添加剂,在剧烈搅拌下反应,环己烯收率可高达60%,提高了技术可行性。1989年日本旭化成公司率先实现了Ru-Zn催化苯部分加氢制环己烯工艺的工业化。1995年,我国神马集团引进日本旭化成苯部分加氢技术。随着技术的引进,国内各大科研院所、高校等的多个课题组相继加入苯选择加氢制环己烯催化剂的研究,研究工作主要集中在优化和完善催化反应条件、研制新催化剂、探索提高环己烯选择性的本质原因。近年来,大量文献报道通过合理设计Ru催化剂来提高环己烯选择性,如采用NaOH溶液对Ru/ZrO2催化剂进行锌刻蚀以增加催化剂表面羟基量,提高催化剂亲水性;又如通过添加合适的助剂La、Cu、Fe、Mn等对催化剂进行改性,从而提高反应选择性。虽然报道的催化剂体系很多,但目前国内工业化生产使用的均是传统Ru-Zn催化剂,且日本旭化成公司一直控制着催化剂的核心制备技术。
本文介绍了苯部分加氢反应的反应机理、热力学特征及传质现象,着重概述了近年来苯部分加氢钌基催化剂的研究现状,包括催化剂前驱体、催化剂制备方法、载体、助剂以及添加剂对催化剂性能的影响,对现阶段研究存在的问题进行了总结,并展望了今后的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王红琴
谢继阳
安霓虹
戴云生
唐春
刘俊
沈亚峰
周伟
关键词:  钌催化剂    部分加氢  环己烯    
Abstract: Cyclohexene with an active double bond is widely used in the synthesis of pharmaceuticals, pesticides, food and other high value-added fine chemicals. Cyclohexene can be synthesized by several ways, such as dehydrogenation of cyclohexane, dehydration of cyclohexanol, dehydrohalogenation of halogenated cyclohexane, Birch reduction or partial hydrogenation of benzene. Compared with other methods, the technology of partial hydrogenation of benzene to cyclohexene is of the advantage of safety, high atom-economy, environmentally friendly, and has caused a wide range of concerns by different researcher in recent years.
The hydrogenation of benzene to cyclohexane is thermodynamically much more favorable since the cyclohexane is at least 75 kJ/mol more stable than cyclohexene in terms of the Gibbs free energy. In addition, cyclohexene is easily hydrogenated to cyclohexane, because the chemical properties of conjugated π bonds of benzene ring are more stable than that of double bond of cyclohexene. Development of new catalyst is the key to enhance the selectivity to cyclohexene for partial hydrogenation of benzene in the tetra-phase reaction system.
The partial hydrogenation of benzene to cyclohexene has been known for more than 100 years. Only in 1957 was the products identified in the hydrogenation of benzene catalyzed by Ni membrane. Since then, the production of cyclohexene in the hydrogenation of benzene at low degrees of conversion has been reported by several researchers, and ruthenium catalysts have been especially suiting for the reaction. One of the most important advances was the adoption of agitated tetra-phase reactors containing an organic phase, an aqueous phase, a gas phase (H2) and a solid phase (catalysts), to which transition metal salts are added, and can achieve yields as high as 60%. In 1989, the Ru-Zn catalyst for benzene partial hydrogenation was industrialised for the first time in Japan by Asahi-Kasei Chemical Co., Ltd.. The technology was introduced from Japan into Shenma Group Company in 1995. Along with the introduction of advanced technology, many research institutes and universities also have stated further research in the partial hydrogenation of benzene in our country. Research work has been dedicated to the optimization of reaction conditions, the development of new catalysts and the exploration of the nature of improving selectivity. In recent years, the great number of scientific articles show that the selectivity of cyclohexene could be improved by reasonably designing ruthenium catalysts. For example, a series of Ru-Zn/ZrO2 catalysts are prepared by post-treatment of a binary Ru-catalyst using NaOH aqueous solutions. Alkaline post-treatment removed metallic Zn, the surface hydroxyl groups content and the hydrophilicity of the catalysts was increased. The Ru-catalysts could be modified by adding a suitable accessory ingredient in order to enhance reaction selectivity. Promoter could modify Ru active sites and dramatically improve the selectivity to cyclohexene. Although several kinds of Ru-based catalysts are developed, the unsupported Ru-Zn catalyst remains the only one used in industry, which pivotal preparation technique has been controlled by Asahi.
The research on liquid-phase partial hydrogenation of benzene in recent years was reviewed, including the influence of precursors, preparation methods, supports, promoters and additives on catalyst activity and the selectivity of the products. The remaining challenges and development trend of partial hydrogenation of benzene to cyclohexene is pointed out at the end.
Key words:  ruthenium catalysts    benzene    partial hydrogenation    cyclohexene
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  O643.38  
基金资助: 国家自然科学基金(21763014)
作者简介:  王红琴,2016年6月毕业于昆明理工大学,获得工学硕士学位。现为贵研铂业股份有限公司研发助理。目前主要研究方向为贵金属催化剂。
安霓虹,吉林大学理学博士、副研究员/硕士研究生导师。主要从事贵金属催化材料的制备和催化反应研究工作,特别是环境催化、精细化工催化和新催化材料设计与制备。已在SCI刊物上发表论文11篇,申请中国发明专利4项。主持参加国家和省部级项目5项。
引用本文:    
王红琴, 谢继阳, 安霓虹, 戴云生, 唐春, 刘俊, 沈亚峰, 周伟. 钌基催化剂催化苯部分加氢制环己烯的研究进展[J]. 材料导报, 2019, 33(23): 4016-4024.
WANG Hongqin, XIE Jiyang, AN Nihong, DAI Yunsheng, TANG Chun, LIU Jun, SHEN Yafeng, ZHOU Wei. Advances in the Ruthenium Catalysts for Partial Hydrogenation of Benzene toCyclohexene. Materials Reports, 2019, 33(23): 4016-4024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070187  或          http://www.mater-rep.com/CN/Y2019/V33/I23/4016
1 Anderson J R. Australian Journal of Chemistry,1957,10(4),409.2 Nagahara H, Ono M, Konishi M, et al. Applied Surface Science,1997,121-122(6),448.3 Kluson P, Cerveny L. Applied Catalysis A General,1995,128(1),13.4 Pei Y, Zhou G B, Luan N, et al. Chemical Society Reviews,2012,41(24),8140.5 Horiuti I, Polanyi M. Transactions of the Faraday Society,1934,30,1164.6 Prasad K H V, Prasad K B S, Mallikarjunan M M, et al. Journal of Catalysis,1983,84(1),65.7 Jenkins G I, Rideal E. Journal of the Chemical Society,1955,0,2490.8 Jenkins G I, Rideal E. Journal of the Chemical Society,1955,0,2496.9 Rooney J J. Journal of Catalysis,1963,2(1),53.10 Garnett J L, Sollich-Baumgartner W A. Advances in Catalysis,1966,16,95.11 Su X C, Kung K, Lahtinen J, et al. Catalysis Letters,1998,54(1-2),9.12 Yuan P Q, Wang B Q, Ma Y M, et al. Journal of Molecular Catalysis A Chemical,2009,301(1),140.13 He H M, Yuan P Q, Ma Y M, et al. Chinese Journal of Catalysis,2009,30(4),312(in Chinese). 何惠民,袁佩青,马悦铭,等.催化学报,2009,30(4),312.14 Fan C, Zhu Y A, Zhou X G, et al. Catalysis Today,2011,160(1),234.15 Xia Y, Fan C, Zhou Z L, et al. Journal of Molecular Catalysis A Chemical,2013,370(4),44.16 Carey F A, Sundberg R J. Advanced organic chemistry, Part A: Structure and mechanisms, Kluwer Academic Publishers, NY,2000.17 Struijk J, Angremond M D, Lucas-de-Regt W J M, et al. Applied Catalysis A General,1992,83(2),263.18 Wang J Q, Wang Y Z, Xie S H, et al. Applied Catalysis A General,2004,272(1-2),29.19 Ning J B, Xu J, Liu J, et al. Catalysis Letters,2006,109(3),175.20 Ronchin L, Toniolo L. Reaction Kinetics, Mechanisms and Catalysis,2003,78(2),281.21 Milone C, Neri G, Donato A, et al. Journal of Catalysis,1996,159(2),253.22 Ronchin L, Toniolo L. Catalysis Today,2001,66(2),363.23 Ronchin L, Toniolo L. Catalysis Today,1999,48(1-4),255.24 Peng Z K, Liu X, Li S H, et al. Scientific Reports,2017,7,39847. 25 Bond G C, Rajaram R R, Burch R. Applied Catalysis,1986,27(2),379.26 Narita T, Miura H, Sugiyama K, et al. Journal of Catalysis,1987,103(2),492.27 Mazzieri V A, Coloma-Pascual F, Arcoya A, et al. Applied Surface Science,2003,210(3),222.28 Mazzieri V A, L’Argentière P C, Coloma-Pascual F, et al. Industrial & Engineering Chemistry Research,2003,42(11),2269.29 Liu S C, Luo G, Han M L, et al. Chinese Journal of Catalysis,2001,22(6),559(in Chinese).刘寿长,罗鸽,韩民乐,等.催化学报,2001,22(6),559.30 Liu J, Xu S M, Bing W H, et al. ChemCatChem,2015,7(5),846.31 Bu J, Pei Y, Guo P J, et al. Studies in Surface Science and Catalysis,2007,165(7),769.32 Zhou G B, Liu J L, Xu K, et al. Chinese Journal of Catalysis,2011,32(9),1537(in Chinese).周功兵,刘建良,许可,等.催化学报,2011,32(9),1537.33 Liu S C, Liu Z Y, Luo G, et al. Petrochemical Technology,2002,31(9),720(in Chinese).刘寿长,刘仲毅,罗鸽,等.石油化工,2002,31(9),720.34 Shi R J, Liu S C, Wang H, et al. Journal of Molecular Catalysis,2005,19(2),141(in Chinese).师瑞娟,刘寿长,王辉,等.分子催化,2005,19(2),141.35 Xue W, Qin Y F, Li F, et al. Chinese Journal of Catalysis,2012,33(12),1913(in Chinese).薛伟,秦燕飞,李芳,等.催化学报,2012,33(12),1913.36 Qin Y F, Xue W, Li F, et al. Chinese Journal of Catalysis,2011,32(11),1727(in Chinese).秦燕飞,薛伟,李芳,等.催化学报,2011,32(11),1727.37 Liu Z, Xie S H, Liu B, et al. New Journal of Chemistry,1999,23(11),1057.38 Liu S C, Luo G, Wang H R, et al. Chinese Journal of Catalysis,2002,23(4),317(in Chinese).刘寿长,罗鸽,王海荣,等.催化学报,2002,23(4),317.39 Linderoth S, Mϕrup S. Journal of Applied Physics,1991,69(8),5256.40 Xue W, Song Y, Wang Y J, et al. Catalysis Communications,2009,11(1),29.41 Niwa S I, Mizukami F, Kuno M, et al. Journal of Molecular Catalysis,1986,34(2),247.42 Liu H Z, Liang S G, Wang W T, et al. Journal of Molecular Catalysis A Chemical,2011,341(1),35.43 Liu H Z, Jiang T, Han B X, et al. Green Chemistry,2011,13(5),1106.44 Rodrigues M F F, Cobo A J G. Catalysis Today,2010,149(3-4),321.45 Suppino R S, Landers R, Cobo A J G. Applied Catalysis A General,2013,452(1),9.46 Xue X, Liu J, Rao D, et al. Catalysis Science & Technology,2017,7(3),650.47 Spod H, Lucas M, Claus P. ChemCatChem,2016,8(16),2659. 48 Zanutelo C, Landers R, Carvalho W A, et al. Applied Catalysis A Gene-ral,2011,409-410(18),174.49 Wang W T, Liu H Z, Ding G D, et al. ChemCatChem,2012,4(11),1836.50 Wang W T, Liu H Z, Wu T B, et al. Journal of Molecular Catalysis A Chemical,2012,355(3),174.51 Shawkataly O B, Jothiramalingam R, Adam F, et al. Catalysis Science and Technology,2012,2(3),538.52 Wang J Q, Guo P J, Qiao M H, et al. Acta Chimica Sinica,2004,62(18),147(in Chinese).王建强,郭平均,乔明华,等.化学学报,2004,62(18),147.53 Tan X H, Zhou G B, Dou R F, et al. Acta Physico-Chimica Sinica,2014,30(5),932(in Chinese).谭晓荷,周功兵,窦镕飞,等.物理化学学报,2014,30(5),932.54 Dou R F, Tan X H, Fan Y Q, et al. Acta Chimica Sinica,2016,74(6),503(in Chinese).窦镕飞,谭晓荷,范义秋,等.化学学报,2016,74(6),503.55 Peng Z K, Liu X, Lin H N, et al. Journal of Materials Chemistry A,2016,4(45),17694.56 Da-Silva J W, Cobo A J G. Applied Catalysis A General,2003,252(1),9.57 Mazzieri V, Fígoli N, Pascual F C, et al. Catalysis Letters,2005,102(1),79.58 Zhou G B, Liu J L, Tan X H, et al. Industrial and Engineering Chemistry Research,2012,51(38),12205.59 Zhou G B, Pei Y, Jiang Z, et al. Journal of Catalysis,2014,311(3),393.60 Fan G Y, Jiang W D, Wang J B, et al. Catalysis Communications,2008,10(1),98.61 Sun H J, Wang H X, Jiang H B, et al. Applied Catalysis A General,2013,450(2),160.62 Yang X L, Guo Y Q, Zhang Z J, et al. Chemical Research and Application,2003,15(5),664(in Chinese).杨新丽,郭益群,张志坚,等.化学研究与应用,2003,15(5),664.63 Yang X L, Guo Y Q, Liu S C. Chinese Journal of Applied Chemistry,2003,20(4),379(in Chinese).杨新丽,郭益群,刘寿长.应用化学,2003,20(4),379.64 Liu J L. Liquid phase hydrogenation of benzene to cyclohexene over Ru-based catalysts. Ph.D. Thesis, Fudan University, China,2010(in Chinese).刘建良.液相苯部分加氢制环己烯反应Ru基催化剂的研究.博士学位论文,复旦大学,2010.65 Sun H J, Pan Y J, Wang H X, et al. Chinese Journal of Catalysis,2012,33(4-6),610.66 Sun H J, Chen Z H, Guo W, et al. Chinese Journal of Chemistry,2011,29(2),369.67 Zhou X L, Sun H J, Guo W, et al. Journal of Natural Gas Chemistry,2011,20(1),53.68 Sun H J, Dong Y Y, Li S H, et al. Journal of Molecular Catalysis A Chemical,2013,368(s368-369),119.69 Liu J L, Zhu Y, Liu J, et al. Journal of Catalysis,2009,268(1),100.70 Liu Z L, Sun H J, Wang D B, et al. Chinese Journal of Chemistry,2010,28(10),1927.71 Fan G Y, Li R X, Li X J, et al. Catalysis Communications,2008,9(6),1394.72 Bu J, Liu J L, Chen X Y, et al. Catalysis Communications,2008,9(15),2612.73 Liu J L, Zhu L J, Pei Y, et al. Applied Catalysis A General,2009,353(2),282.74 Sun H J, Guo W, Zhou X L, et al. Chinese Journal of Catalysis,2011,32(1),1(in Chinese).孙海杰,郭伟,周小莉,等.催化学报,2011,32(1),1.75 Silveira E T, Umpierre A P, Rossi L M, et al. Chemistry-A European Journal,2004,10(15),3734.76 Rossi L M, Machado G. Journal of Molecular Catalysis A Chemical,2009,298(1-2),69.77 Luza L, Gual A, Dupont J. ChemCatChem,2014,6(3),702.78 Luza L, Gual A, Rambor C P, et al. Physical Chemistry Chemical Phy-sics,2014,16(34),18088.79 Struyk J, Scholten J J F. Applied Catalysis,1990,62(1),151.80 Johnson M M, Nowack G P. Journal of Catalysis,1975,38(1-3),518.81 Qu Y X, Fang C X, Qian C Y, et al. Reaction Kinetics Mechanisms and Catalysis,2014,111(2),647.82 Xie S H, Qiao M H, Li H X, et al. Applied Catalysis A General,1999,176(1),129.83 Hu S C, Chen Y W. Industrial and Engineering Chemistry Research,2001,40(26),6099.84 Van Der Steen P J, Scholten J J F. Applied Catalysis,1990,58(1),281.
[1] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[2] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[3] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[4] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[5] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[6] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[7] 袁腾, 梁斌, 黄家健, 杨卓鸿, 邵庆辉. 壳层厚度对中空苯丙乳胶粒结构形态及遮盖性的影响[J]. 材料导报, 2019, 33(4): 724-728.
[8] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[9] 王博成,刘桅,涂征,吴崇刚,石彪,胡涛,龚兴厚. 苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响[J]. 材料导报, 2019, 33(22): 3833-3836.
[10] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[11] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[12] 常兆峰, 田路萍, 梁妮, 张朋超, 周丹丹, 张军, 吴敏. 苯多酸分子标志物法对NaClO氧化前后生物炭的性质描述[J]. 材料导报, 2019, 33(12): 2089-2094.
[13] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[14] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[15] 胡洋, 赵祺, 芦艾, 王志勇, 沈思敏. 苯基硅橡胶泡沫的制备及阻尼性能[J]. 材料导报, 2019, 33(10): 1752-1755.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed