Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1897-1909    https://doi.org/10.11896/cldb.18040044
  高分子与聚合物基复合材料 |
聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展
王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡
1 湖北工业大学材料与化学工程学院,绿色轻工材料湖北省重点实验室,武汉 430068
2 湖北工业大学绿色轻质材料与加工协同创新中心,武汉 430068
High Performance and Fully Biodegradable Poly (lactic acid) (PLA) Composites Modified by Poly (Butylene Adipate-co-terephthalate) (PBAT): a Review
WANG Xin, SHI Min, YU Xiaolei, PENG Shaoxian, ZHAO Xipo
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068
2 Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 4166KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸(PLA)作为一种可降解、可再生的聚合物,其优异的生物相容性和高强度、高模量的力学性能引起了许多学者的关注。聚乳酸基生物复合材料自进入人们的视野以来,由于其固有的延展性差、冲击强度低,加工过程结晶速率慢,结晶度小等缺陷,严重阻碍了其发展。关于PLA的改性研究在近十年里从未间断过,主要集中在增塑改性、增强改性、增韧改性。增塑改性是指向PLA中加入乳酸低聚物、柠檬酸酯、聚乙二醇等小分子化合物,减少PLA分子链间的相互作用,改善PLA的塑性,断裂伸长率大幅度提高,但增塑剂易渗出、迁移是如今面临的一大难题;增强改性是指向PLA加入无机填料或纳米粒子(二氧化硅(SiO2)、二氧化钛(TiO2)、碳酸钙(CaCO3)、滑石粉(Talc)、蒙脱土(MMT)等)引发异相成核,改善PLA的结晶性能,但无法从根本上解决材料韧性差的缺陷;增韧改性是指加入橡胶粒子或热塑性弹性体(天然橡胶(NR)、热塑性聚氨酯(TPU)、聚碳酸酯(PC)等),虽然在一定程度上改善了PLA的韧性,但PLA的生物降解性无法保证;随着一些可降解聚酯(聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)、聚己二酸对苯二甲酸丁二酯(PBAT)等)的产生,在不改变降解性能下,对PLA进行有效的增韧改性,是聚乳酸改性研究的主要方向和研究热点。PBAT作为一种可降解聚酯聚合物,链段兼具长链脂肪烃的柔性和芳环的刚性,赋予了其优异的柔韧性,与其他聚酯材料相比,这一优势是作为增韧改性PLA的最佳选择。在早期PLA/PBAT的研究过程中就发现,由于分子链段上结构的巨大差异,PBAT与PLA的相容性差导致共混物力学性能不佳。近十年里,研究者在聚合物共混改性的基础上,选择合适的第三组分对PLA/PBAT共混体系进行改性,并取得了丰硕的成果。目前,PLA/PBAT共混体系的增韧后冲击强度由纯PLA的2.3 kJ/m2提高至61.9 kJ/m2。本文归纳了PBAT增韧改性PLA共混体系复合材料的研究进展,分别对物理共混(无机填料或纳米粒子和物理相容剂)、反应性共混增容剂改性PLA/PBAT体系进行了介绍,分析了PLA/PBAT共混改性体系面临的问题并展望其前景,以期为制备高性能全生物降解PLA/PBAT复合材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鑫
石敏
余晓磊
彭少贤
赵西坡
关键词:  聚乳酸  聚己二酸对苯二甲酸丁二酯  生物降解  反应性共混    
Abstract: As a biodegradable and renewable material, poly(lactic acid) (PLA) has attracted numerous attention for its excellent biocompatibility and mechanical performance (high strength and high modulus). PLA matrix biocomposites have been seriously blocked by its poor ductility, low impact strength, low crystallization rate and low crystallinity since it entered people’s eye shot. Continuous efforts have been put into the modification research of PLA in the past ten years,which primarily focus on plasticizing, strengthening and toughening. Specifically speaking, plasticizing modification is adding the small molecular compound like lactic acid oligomer, citrate and polyethylene glycol into PLA, for the sake of reducing the interaction between PLA chains, improving the plasticity of PLA, and increasing the elongation at break. Yet the plasticizers are likely to exude and migrate, which is a crucial problem now. Reinforcement modification, namely heterogeneous nucleation of PLA with inorganic fillers or nanoparticles like silica (SiO2), titanium dioxide (TiO2), calcium carbonate (CaCO3), talcum powder (Talc), montmorillonite, which can improve the crystalline properties of PLA, but can not fundamentally enhance the brittleness of the material toughening modification refer to the addition of rubber particles or thermoplastic elastomer such as natural rubber (NR), thermoplastic polyurethane (TPU), polycarbonate (PC) into PLA. Although the toughness of the composite is improved to some extent, the biodegradability cannot be preserved. With the production of some degradable polyester including polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (butylene adipate-co-terephthalate) (PBAT), PLA can be effectively toughened without sacrificing the degradation performance. It is the main direction and research hotspot of PLA modification. PBAT, a degradable polyester polymer, possesses the flexibility of aliphatic hydrocarbon and the rigidity of aromatic ring, which makes PBAT emerge as the best candidate for PLA toughening. In the early research of PLA/PBAT, it was found that the poor compatibility of PBAT and PLA resulted in unsatisfactory mechanical properties of the blends, which is primarily caused by the tremendous differences in the structure of molecular chain segment. In the last decade, on the basis of polymer blending modification, researchers have selected the appropriate third component to modify the PLA/PBAT blend system, and achieved fruitful results. Presently, the impact strength of the PLA/PBAT blend system after toughening has been raised from 2.3 kJ/m2 to 61.9 kJ/m2. This review offers a retrospection of the research efforts with respect to the progress of modification PLA/PBAT blends, and provides elaborate descriptions about physical blend (inorganic filler or nanoparticles and physical compatibility agent) and reactive blending compatibilizer modified PLA/PBAT blends. Finally, we focus on the problems faced by PLA/PBAT blending modification system, aiming at providing a reference for the preparation of high performance fully biodegradable PLA/PBAT composites.
Key words:  poly(lactic acid)    poly(butylene adipate-co-terephthalate)    biodegradation    reactive blend
                    发布日期:  2019-05-21
ZTFLH:  TB324  
基金资助: 国家自然科学基金(21174108;51273060)
通讯作者:  xpzhao123@163.com   
引用本文:    
王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
WANG Xin, SHI Min, YU Xiaolei, PENG Shaoxian, ZHAO Xipo. High Performance and Fully Biodegradable Poly (lactic acid) (PLA) Composites Modified by Poly (Butylene Adipate-co-terephthalate) (PBAT): a Review. Materials Reports, 2019, 33(11): 1897-1909.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040044  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1897
1 Kates L C, Fitzgerald R. Aesthetic Surgery Journal,2008,28(4),397.
2 Reddy M M, Vivekanandhan S, Misra M, et al. Progress in Polymer Science,2013,38(10),1653.
3 Garlotta D. Journal of Polymers & the Environment,2001,9(2),63.
4 Gandini A, Coelho D, Gomes M, et al. Journal of Materials Chemistry,2009,19(45),8656.
5 Gupta B, Revagade N, Hilborn J. Progress in Polymer Science,2007,32(4),455.
6 Bai H, Xiu H, Gao J, et al. ACS Applied Materials & Interfaces,2012,4(2),897.
7 Wang M, Wu Y, Li Y, et al. Polymer Reviews,2017,57(4),557.
8 Krishnan S, Pandey P, Mohanty S, et al. Polymer-Plastics Technology and Engineering,2016,55(15),1623.
9 Nagarajan V, Mohanty A K, Misra M. ACS Sustainable Chemistry & Engineering,2016,4(6),2899.
10 Zeng J, Li K, Du A. RSC Advances,2015,5(41),32546.
11 Zhou S, Huang H, Ji X, et al. ACS Applied Materials & Interfaces,2016,8(12),8096.
12 Palsikowski P A, Kuchnier C N, Pinheiro I F, et al. Journal of Polymers & the Environment,2018,26(1),330.
13 Jiang L, Wolcott M P, Zhang J. Biomacromolecules,2006,7(1),199.
14 Chaiwutthinan P, Chuayjuljit S, Srasomsub S, et al. Journal of Applied Polymer Science,2019,136(21),47543.
15 Li K, Peng J, Turng L, et al. Advances in Polymer Technology,2011,30(2),150.
16 Jiang Z, Wang Y, Fu L, et al. Macromolecules,2013,46(17),6981.
17 Sinha Ray S, Okamoto K, Okamoto M. Macromolecules,2003,36(7),2355.
18 Aframehr W M, Molki B, Heidarian P, et al. Fibers & Polymers,2017,18(11),2041.
19 Shi N, Dou Q. Polymer Composites,2014,35(8),1570.
20 Shi N, Dou Q. Journal of Thermal Analysis & Calorimetry,2015,119(1),635.
21 Pilla S, Kim S G, Auer G K, et al. Materials Science & Engineering C,2010,30(2),255.
22 Dil E J, Favis B D. Polymer,2015,76,295.
23 Dil E J, Virgilio N, Favis B D. European Polymer Journal,2016,85,635.
24 Georgiopoulos P, Kontou E, Niaounakis M. Polymer Composites,2014,35(6),1140.
25 Phetwarotai W, Tanrattanakul V, Phusunti N. Plastics Rubber & Compo-sites,2016,45(8),333.
26 Craciun A M, Focsan M, Magyari K, et al. Materials,2017,10(7),836.
27 Girdthep S, Worajittiphon P, Molloy R, et al. Polymer International,2015,64(2),203.
28 Girdthep S, Worajittiphon P, Leejarkpai T, et al. European Polymer Journal,2016,82,244.
29 Tiimob B J, Mwinyelle G, Abdela W. Journal of Agricultural & Food Chemistry,2017,65(9),1967.
30 Ma P, Jiang L, Yu M, et al. ACS Sustainable Chemistry & Engineering,2016,4(12),6417.
31 Sun Y H, Cai S, Ren J, et al. Journal of Polymer Science Part B Polymer Physics,2017,55(16),1197.
32 Jiang L, Liu B, Zhang J. Industrial & Engineering Chemistry Research,2009,48(16),7594.
33 Moustafa H, El K, Abou-Kandil A, et al. ACS Applied Materials & Interfaces,2017,9(23),20132.
34 Fernandes T M D, Leite M C A M, de Sousa A M F, et al. Polymer Bulletin,2017,74(5),1713.
35 Chen R, Abdelwahab M A, Misra M, et al. Journal of Polymers and the Environment,2014,22(4),439.
36 Ravati S, Beaulieu C, Zolali A M, et al. AIChE Journal,2014,60(8),3005.
37 Zolali A M, Favis B D. Journal of Physical Chemistry B,2016,120(49),12708.
38 Sun Z, Zhang B, Bian X, et al. RSC Advances.2015,5(90),73842.
39 Ding Y, Lu B, Wang P, et al. Polymer Degradation and Stability,2018,147,41.
40 Bao R, Jiang W, Liu Z, et al. RSC Advances,2015,5(44),34821.
41 Liu G C, He Y S, Zeng J B, et al. Polymer Chemistry,2014,5(7),2530.
42 Yao Z, Sun J, Wang Q, et al. Industrial & Engineering Chemistry Research,2011,51(2),751.
43 Teamsinsungvon A, Jarapanyacheep R, Ruksakulpiwat Y, et al. Polymer Science, Series A,2017,59(3),384.
44 Coltelli M, Toncelli C, Ciardelli F, et al. Polymer Degradation and Stability,2011,96(5),982.
45 Lin S, Guo W, Chen C, et al. Materials & Design,2012,36,604.
46 Wang B, Zhao X, Wang L. Polymer-Plastics Technology and Enginee-ring,2013,52(7),718.
47 Xu C, Cao L, Lin B, et al. ACS Applied Materials & Interfaces,2016,8(27),17728.
48 Bai J, Li H, Shi Z, et al. Macromolecules,2015,48(11),3539.
49 Zhao J, Chen M, Wang X, et al. ACS Applied Materials & Interfaces,2013,5(12),5550.
50 Nishida M, Ichihara H, Watanabe H, et al. International Journal of Impact Engineering,2015,79,117.
51 Signori F, Boggioni A, Righetti M C, et al. Macromolecular Materials and Engineering,2015,300(2),153.
52 Ma P, Cai X, Zhang Y, et al. Polymer Degradation and Stability,2014,102(102),145.
53 Jin Y, Men S, Weng Y. Journal of Polymer Engineering,2018,38(3),223.
54 Dong W, Zou B, Ma P, et al. Polymer International,2013,62(12),1783.
55 Gody G, Roberts D A, Maschmeyer T, et al. Journal of the American Chemical Society,2016,138(12),4061.
56 Pan H, Li Z, Yang J, et al. RSC Advances,2018,8(9),4610.
57 Tuna B, Ozkoc G. Journal of Polymers and the Environment,2017,25(4),983.
58 Schneider J, Manjure S, Narayan R. Journal of Applied Polymer Science,2016,133(16),43310.
59 Al-Itry R, Lamnawar K, European Polymer Journal,2014,58,90.
60 Al-Itry R, Lamnawar K, Maazouz A. Polymer Degradation and Stability,2012,97(10),1898.
61 Al-Itry R, Lamnawar K, Maazouz A. Rheological Acta,2014,53(7),501.
62 Al-Itry R, Lamnawar K, Maazouz A, et al. European Polymer Journal,2015,68(SI),288.
63 Meng Q Y, Weng Y X. China Plastics,2014,28(2),91(in Chinese).
孟庆阳,翁云宣.中国塑料,2014,28(2),91.
64 Zhang N, Zeng C, Wang L, et al. Journal of Polymers and the Environment,2013,21(1),286.
65 Yang W, Dominici F, Fortunati E, et al. RSC Advances,2015,5(41),32350.
66 Yuryev Y, Mohanty A K, Misra M. Macromolecular Materials and Engineering,2016,301(12),1443.
67 Luo Y, Ju Y, Bai H, et al. The Journal of Physical Chemistry B,2017,121(25),6271.
68 Zhang N, Wang Q, Ren J, et al. Journal of Materials Science,2009,44(1),250.
69 Wu N, Zhang H. Materials Letters,2017,192,17.
70 Abdelwahab M A, Taylor S, Misra M, et al. Macromolecular Materials and Engineering,2015,300(3),299.
71 Wang H, Fu Z, Zhao X, et al. ACS Applied Materials & Interfaces,2017,9(16),14358.
72 Phetwarotai W, Aht-Ong D. Journal of Thermal Analysis and Calorimetry,2016,126(3),1797.
73 Phetwarotai W, Tanrattanakul V, Phusunti N. Chinese Journal of Polymer Science,2016,34(9),1129.
74 Sun Y, Cai S, Ren J, et al. Journal of Polymer Science Part B Polymer Physics,2017,55(16),1197.
75 Freitas A L P D, Filho L R T, Calvão P S, et al. Polymer Testing,2017,62,189.
76 Kumar M, Mohanty S, Nayak S K, et al. Bioresource Technology,2010,101(21),8406.
77 Mohapatra A K, Mohanty S, Nayak S K. Journal of Polymers and the Environment,2014,22(3),398.
78 Zhou Y, Lei L, Yang B, et al. Polymer Testing,2017,60,78.
[1] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[2] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[3] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[4] 彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
[5] 赵西坡, 刘畅, 徐敏, 彭少贤. 无机成核剂改善聚乳酸结晶性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1158-1164.
[6] 桑练勇, 胡志德, 晏华, 代军, 张寒松. 可降解材料聚碳酸亚丙酯和聚乳酸的溶度参数与相容性[J]. 材料导报, 2018, 32(22): 3948-3953.
[7] 李文豪, 吴义强, 李萍, 李新功, 左迎峰. 竹纤维/聚乳酸可降解复合材料相容界面构建进展[J]. 材料导报, 2018, 32(17): 3076-3082.
[8] 左迎峰, 吴义强, 顾继友, 佘佳荣, 郭鑫, 江萍. MAH改性方法对淀粉/聚乳酸界面相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 41-45.
[9] 诸婷婷, 谢明明, 龚狄荣. 含半不稳定边臂配体的钛配合物催化丙交酯聚合*[J]. 《材料导报》期刊社, 2017, 31(14): 40-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed