Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 40-45    https://doi.org/10.11896/j.issn.1005-023X.2017.014.009
  材料研究 |
含半不稳定边臂配体的钛配合物催化丙交酯聚合*
诸婷婷, 谢明明, 龚狄荣
宁波大学材料科学与化学工程学院, 宁波 315211;
Ring-opening Polymerization of Lactide Catalyzed by Titanium Complexes with Schiff Base Ligand Bearing a Hemilabile Side Arm
ZHU Tingting, XIE Mingming, GONG Dirong
Department of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
下载:  全 文 ( PDF ) ( 1389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸类材料作为可生物降解性材料具有广阔的应用前景。设计、合成了6种含半不稳定边臂的希夫碱配体L1—L6,并与钛酸四异丙酯络合合成相应的6种配合物C1—C6,配合物的结构和化学组成经元素分析、红外测试确定。将其作为催化剂催化丙交酯开环聚合,以催化剂C1为考察对象,系统研究了催化剂用量、温度、时间对聚合反应的影响,发现当单体与催化剂配比为2 000,温度为160 ℃,反应24 h时,聚合产率最高,达90.35%,聚合物分子量达8.41×104。在上述优化条件下,比较了催化剂C1—C6的活性,结果表明催化剂活性按以下顺序递减:C6> C4>C3>C1>C2>C5,同时,催化剂中心金属钛原子周围位阻相对稍小,配体中含配位能力较弱的半不稳定O边臂均有利于提高催化剂的活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
诸婷婷
谢明明
龚狄荣
关键词:  聚乳酸  丙交酯  催化剂  开环聚合  含半不稳定边臂的希夫碱配体  钛配合物    
Abstract: Polylactic acid is an important biodegradable material which has diversified applications in our daily life. We designed and synthesized six Schiff base ligands with hemilabile side arm oxygen or sulfide (L1—L6) and their corresponding complexes (C1—C6) by the reaction with tetraisopropyl titanate. The structures of the complexes were identified by elemental analysis and infrared spectroscopy. The catalytic performance in lactide ring-opening polymerization were carefully examined. Different polymerization conditions such as catalyst concentration, temperature, polymerization time as well as the catalyst structures were investigated in order to study their influences on the polymerization behaviors towards lactide with C1 as a typical example. We found the polymer yield reached the highest level of 90.35% and the molecular weight of the polymer reached 8.41×104 g/mol at molar ratio of monomer to catalyst of 2 000 at 160 ℃ for 24 h. The catalyst activity decreased in the order of C6>C4>C3>C1>C2>C5 at the optimal conditions. The less bulkiness of catalyst environment around the metal center and the hemilability of the side arm which has weaker coordination ability and are both beneficial to improve the activity.
Key words:  polylactic acid    lactide    catalyst    ring-opening polymerization    Schiff base ligand with hemilabile side arm    tita-nium complex
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  O643.32+1  
基金资助: *浙江省自然科学基金(LY17E030002);宁波市自然科学基金(2016A610045);国家自然科学基金(21304050)
作者简介:  诸婷婷:女,1995年生,硕士研究生,主要研究方向为金属有机催化剂的合成与应用 E-mail:861896463@qq.com 龚狄荣:通讯作者,男, 1981年生,博士,副教授,主要研究方向为金属有机催化烯烃聚合 E-mail:gongdirong@nbu.edu.cn
引用本文:    
诸婷婷, 谢明明, 龚狄荣. 含半不稳定边臂配体的钛配合物催化丙交酯聚合*[J]. 《材料导报》期刊社, 2017, 31(14): 40-45.
ZHU Tingting, XIE Mingming, GONG Dirong. Ring-opening Polymerization of Lactide Catalyzed by Titanium Complexes with Schiff Base Ligand Bearing a Hemilabile Side Arm. Materials Reports, 2017, 31(14): 40-45.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.009  或          https://www.mater-rep.com/CN/Y2017/V31/I14/40
1 Jiang A J. Research on the performance and preparation of sisal fibers reinforced polylacticacid composites[D]. Guangzhou: South China University of Technology,2012(in Chinese).
姜爱菊. 剑麻纤维增强聚乳酸复合材料的制备及性能研究[D]. 广州:华南理工大学,2012.
2 Zhao Y M, Zhang J, Mai H Z. Study on the direct polycondensation of polylactic acid[J].Synth Fiber China,2001,30(3):3(in Chinese).
赵耀明, 张军, 麦杭珍. 直接缩聚法合成聚乳酸的研究[J]. 合成纤维,2001,30(3):3.
3 Achmad F, Yamane K, Quan S, et al. Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators[J]. Chem Eng J,2009,151(1):342.
4 Wang Z Y, Zhao Y M, Mai H Z, et al. Study on the direct synthetic of polylactic acid Through melt polycondensation[J]. Synth Fiber China,2002,31(2):11(in Chinese).
汪朝阳, 赵耀明, 麦杭珍, 等. 熔融聚合法直接合成聚乳酸的研究[J]. 合成纤维,2002,31(2):11.
5 Thakur K A M, Kean R T, Hall E S, et al. High-resolution 13C and 1H solution NMR study of poly(lactide)[J]. Macromolecules,1997,30(8):2422.
6 Kricheldorf H R, Berl M, Scharnagl N. Poly(lactones). 9. polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones[J]. Macromolecules,1988,21(2):286.
7 Huang X P. Synthesis of lactide and polylactic acid[J]. Guangdong Chem Ind,2014,41(5):56(in Chinese).
黄晓萍. 丙交酯与聚乳酸的合成[J]. 广东化工,2014,41(5):56.
8 Liu H, Wang X J, Zhang L X. Synthesis of high molecular weight poly lactic acid by lactidering-opening polymerization[J]. Guangzhou Chem Ind,2015,46(7):124 (in Chinese).
刘辉, 王肖杰, 张留学. 丙交酯开环聚合法合成高分子量聚乳酸[J]. 广州化工,2015,46(7):124.
9 Liu Z. The synthesis of main group metal complexes supp-orted by β-ketoiminato ligands and their catalytic behaviors on the polymerization of PLA[D]. Wuxi: Jiangnan University,2013(in Chinese).
刘臻. β-酮亚胺基主族金属配合物的制备和催化聚乳酸[D]. 无锡: 江南大学,2013.
10 Wu J. Syntheses, structures and catalytic properties of sulfobenzoate titanium complexes[D].Hangzhou:Zhejiang University,2015(in Chinese).
吴静. 磺基苯甲酸钛配合物的合成、结构及催化性质研究[D].杭州: 浙江大学,2015.
11 Li X, Hu C B, Fu Y, et al. Ring-opening polymerization of D,L-lactide to synthesize polylactic acid catalyzed by schiff-base titanium complex[J]. J Funct Mater,2011,42(10):1772(in Chinese).
李香, 胡承波, 傅亚, 等. 希夫碱钛配合物催化D,L-丙交酯本体开环合成聚乳酸[J]. 功能材料,2011,42(10):1772.
12 Lindner R, Bosch B V D, Lutz M, et al. Tunable Hemilabile Ligands for adaptive transitionmetal complexes[J]. Organometallics,2011,30(3):499.
13 Gareau D, Suiseng C, Groux L F, et al. Indenyl-nickel complexes bearing a pendant, hemilabile olefin ligand: Preparation, characte-rization, and catalytic activities[J].Organometallics,2005,24(16):4003.
14 Cunningham D, McArdle P, Mitchell M, et al. Adduct formation between alkali metal ions and divalent metal salicylaldimine complexes having methoxy substituents. A structural investigation[J]. Inorg Chem,2000,39(8):1639.
15 Raya L, Katiyarb V, Barman S, et al. Gold(I)N-heterocyclic carbene based initiators for bulk ring-opening polymerization of L-lactide[J]. J Organometallic Chem,2007,692(20):4259.
16 Yang J J. Polymerization of styrene and isoprene with rare earth schiff base complexes[D]. Hangzhou: Zhejiang University,2006(in Chinese)
杨建江. 稀土希夫碱配合物催化苯乙烯、异戊二烯聚合[D]. 杭州: 浙江大学,2006.
17 Li J F. Gas phase polymerization of conjugated dienes with supported rare earth catalyst: kinetics and molecular weight control[D]. Hangzhou:Zhejiang University,2002(in Chinese).
李俊菲. 双烯烃气相聚合-聚合动力学和分子量控制研究[D]. 杭州: 浙江大学,2002.
18 Hu M G, Wang F G, Cao Q B, et al. Synthesis and catalytic beha-viors of a new Ti complex supported by unsymmetric N, O ligand[J].J Qiqihar University,2015,31(6):58(in Chinese).
胡明刚, 王富贵, 曹清彬, 等. 对称氮氧配体钛配合物合成及催化丙交酯开环聚合研究[J]. 齐齐哈尔大学学报,2015,31(6):58.
19 Hu C B, Fu Y, Xiang H Z, et al. Rop of D,L-lactide catalyzed by bis(alkoxy-imine-phenoxy) titanium(Ⅳ) complex: Kinetic and mechanism[J]. Acta Chim Sin,2011,69(21):2574(in Chinese).
胡承波, 傅亚, 向鸿照, 等. 双(烷氧-亚胺芳氧)基钛(Ⅳ)配合物催化D,L-丙交酯开环聚合、动力学及机理[J]. 化学学报,2011,69(21):2574.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[3] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[6] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[7] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[10] 李晗, 张恒, 赵珂, 杨自强, 甘益, 秦子轩, 翟倩, 甄琪. PLA/PEG@SiO2超细纤维包装材料及其日间辐射降温性能[J]. 材料导报, 2024, 38(20): 23070234-7.
[11] 王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂的研究进展[J]. 材料导报, 2024, 38(19): 23050178-13.
[12] 丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
[13] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[14] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[15] 谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed