Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23040182-7    https://doi.org/10.11896/cldb.23040182
  电化学能源材料与器件 |
高性能Ir基阳极双催化层阴离子交换膜电解水
尹燕1, 尹硕尧1,2, 陈斌1, 冯英杰3,*, 张俊锋1,*
1 天津大学机械工程学院,先进内燃动力全国重点实验室,天津 300072
2 中国汽车技术研究中心有限责任公司,移动源污染排放控制技术国家工程实验室,天津 300300
3 中石化(北京)化工研究院有限公司催化科学研究所,北京 100013
High-performance Ir Based Double Anode Catalyst Layer for Anion Exchange Membrane Water Electrolysis
YIN Yan1, YIN Shuoyao1,2, CHEN Bin1, FENG Yingjie3,*, ZHANG Junfeng1,*
1 State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
2 National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, China
3 Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
下载:  全 文 ( PDF ) ( 24201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计高性能低Ir阳极催化层对阴离子交换膜电解水(AEMWE)商业化发展至关重要。本研究采用催化剂涂覆基底(CCS)方法,构建基于氧化铱(IrO2)和碳载铱(IrC)双催化层的阳极结构,提出了一种新型双Ir催化层并提高了AEMWE性能。研究表明,在IrC-IrO2(先喷涂碳载铱,后喷涂氧化铱)催化层中,IrC高度分散特性有利于提高催化层中Ir的利用率,优化了催化层内电子、氢氧根离子的传输。采用商业Pt/C催化剂作为阴极,IrC-IrO2阳极双催化层组装成碱性膜电极,在1 mol/L KOH电解质条件下,2.0 V时IrC-IrO2电极达到了2.31 A/cm2的高电流密度,而且在低浓度电解质以及纯水中依旧保持较高的性能。本研究为碱性膜电解水技术高效催化层的设计提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹燕
尹硕尧
陈斌
冯英杰
张俊锋
关键词:  阴离子交换膜电解水(AEMWE)  析氧反应(OER)  双催化层  Ir基催化剂    
Abstract: Design of high-performance low-Ir anode catalyst layer is crucial for the commercial development of anion-exchange membrane water electrolysis (AEMWE). In this study, a double catalyst layer structure based on iridium oxide (IrO2) and carbon loaded iridium (IrC) was constructed by catalyst coated substrate (CCS) method to improve AEMWE performance. It was found that the IrC-IrO2 catalyst layer is beneficial to improve the Ir utilization and optimize the transport of electron and hydroxide ions within the catalyst layer due to the highly dispersed morphology of IrC. High AEMWE current density of 2.31 A/cm2 was achieved at 2.0 V under 1 mol/L KOH by combining commercial Pt/C catalyst as cathode and IrC-IrO2 double catalyst layer as the anode. High performance was maintained at low electrolyte concentrations as well as in pure water. This study provides an example of the efficient catalyst layer design for AEMWE technology.
Key words:  anion exchange membrane water electrolysis (AEMWE)    oxygen evolution reaction (OER)    double catalyst layer    Ir based catalyst
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  O6  
基金资助: 中国石化科研项目基金(122060)
通讯作者:  *冯英杰,中石化(北京)化工研究院正高级研究员。2007年获得北京科技大学学士学位,2012年获得北京大学博士学位,2019—2020年为美国耶鲁大学访问学者。主要从事催化材料、电解水制氢技术等研究。承担和参与省部级项目10余项,曾获北京市科技进步二等奖、中石化科技创新三等奖。申请发明专利50余项,在Small、JMCA、Chemical Engineering Journal等国内外期刊发表论文20余篇。
张俊锋,天津大学机械工程学院副教授、硕士研究生导师。2004年于苏州大学获得学士学位,2010年和2014年先后获得日本信州大学硕士和博士学位,2016年天津大学化学工艺系博士后出站并于同年入职天津大学。主要从事燃料电池、电解水等关键材料、膜电极的相关研究,在Energ.Environ.Sci.、Adv.Mater.、Nat.Commun.、Adv.Sci.、Appl.Catal.B Environ.等国际期刊发表论文100余篇,多篇论文被Springer、Elsevier、Wiley等出版社推荐为亮点论文。   
作者简介:  尹燕,天津大学机械工程学院教授、博士研究生导师。1996年和1999年先后获得天津工业大学学士和硕士学位,2003年获得日本国立山口大学博士学位,之后留校从事博士后研究。2007年被天津大学引进回国。主要从事清洁能源低碳领域燃料电池及电解池关键材料及传输过程基础研究工作,发表论文100余篇,包括Nature Energy、Nature Mater.、Nature Commun.、Energ.Environ.Sci.、Angew.Chem.Int.Ed.、Appl.Catal.B Environ.等。
引用本文:    
尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
YIN Yan, YIN Shuoyao, CHEN Bin, FENG Yingjie, ZHANG Junfeng. High-performance Ir Based Double Anode Catalyst Layer for Anion Exchange Membrane Water Electrolysis. Materials Reports, 2024, 38(6): 23040182-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040182  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23040182
1 Zhang J F, Zhu W K, Pei Y B, et al. ChemSusChem, 2019, 12(18), 4165.
2 Zhu W K, Pei Y B, Liu Y, et al. ACS Applied Materials & Interfaces, 2020, 12, 32842.
3 Ying Y, Fan K, Luo X, et al. Journal of Materials Chemistry A, 2021, 9(31), 16860.
4 Nazim N. International Journal of Hydrogen Energy, 2017, 42, 14058.
5 Wang C, Shang H Y, Jin L J, et al. Nanoscale, 2021, 13, 7897.
6 Hiroki N, Yu K, Nobuyuki T, et al. International Journal of Hydrogen Energy, 2021, 46, 22328.
7 Carmo M, Fritz D L, Mergel J, et al. Journal of Hydrogen Energy, 2013, 38(12), 4901.
8 Balogun M S, Qiu W T, Huang Y C, et al. Advanced Materials, 2017, 29(34), 1702095.
9 Haug P, Koj M, Turek T. International Journal of Hydrogen Energy, 2017, 42(15), 9406.
10 Schmidt O, Gambhir A, Staffell I, et al. International Journal of Hydrogen Energy, 2017, 42(52), 30470.
11 Xu Q C, Zhang L Y, Zhang J H, et al. EnergyChem, 2022, 4(5), 100087.
12 Guo D D, Chi J, Yu H M, et al. Energies, 2022, 15(13), 4645.
13 Thangavel P, Ha M, Kumaraguru S, et al. Energy & Environmental Science, 2020, 13(10), 3447.
14 Xiao C L, Li Y B, Lu X Y, et al. Advanced Functional Materials, 2016, 26(20), 3515.
15 Choi W S, Jang M J, Park Y S, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 38663.
16 Park Y S, Yang J, Lee J, et al. Applied Catalysis B: Environmental, 2020, 278, 119276.
17 Mu X M, Wang K, Lv K Y, et al. ACS Applied Materials & Interfaces, 2023, 15(13), 16552.
18 Razmjooei F, Morawietz T, Taghizadeh E, et al. Joule, 2021, 5(7), 1776
19 Cho M K, Park H Y, Lee H J, et al. Journal of Power Sources, 2018, 382, 22.
20 Zhang J F, Liu Y, Zhu W K, et al. Cell Reports Physical Science, 2021, 2(3), 100377.
21 Yin Y, Liu J, Chang Y F, et al. Electrochimica Acta, 2019, 296, 450.
22 Wan L, Xu Z A, Wang P C, et al. Chemical Engineering Journal, 2022, 431, 133942.
23 Zhao S, Yu H R, Maric R, et al. Journal of the Electrochemical Society, 2015, 162(12), F1292.
24 Schonvogel D, Hülstede J, Wagner P, et al. Journal of the Electrochemical Society, 2017, 164(9), F995.
25 Li K, Yu S, Li D, et al. ACS Applied Materials & Interfaces, 2021, 13(43), 50957.
26 Zhang Y, Liu T, Dong D, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24248.
[1] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[2] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed