1 State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China 2 National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, China 3 Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
Abstract: Design of high-performance low-Ir anode catalyst layer is crucial for the commercial development of anion-exchange membrane water electrolysis (AEMWE). In this study, a double catalyst layer structure based on iridium oxide (IrO2) and carbon loaded iridium (IrC) was constructed by catalyst coated substrate (CCS) method to improve AEMWE performance. It was found that the IrC-IrO2 catalyst layer is beneficial to improve the Ir utilization and optimize the transport of electron and hydroxide ions within the catalyst layer due to the highly dispersed morphology of IrC. High AEMWE current density of 2.31 A/cm2 was achieved at 2.0 V under 1 mol/L KOH by combining commercial Pt/C catalyst as cathode and IrC-IrO2 double catalyst layer as the anode. High performance was maintained at low electrolyte concentrations as well as in pure water. This study provides an example of the efficient catalyst layer design for AEMWE technology.
1 Zhang J F, Zhu W K, Pei Y B, et al. ChemSusChem, 2019, 12(18), 4165. 2 Zhu W K, Pei Y B, Liu Y, et al. ACS Applied Materials & Interfaces, 2020, 12, 32842. 3 Ying Y, Fan K, Luo X, et al. Journal of Materials Chemistry A, 2021, 9(31), 16860. 4 Nazim N. International Journal of Hydrogen Energy, 2017, 42, 14058. 5 Wang C, Shang H Y, Jin L J, et al. Nanoscale, 2021, 13, 7897. 6 Hiroki N, Yu K, Nobuyuki T, et al. International Journal of Hydrogen Energy, 2021, 46, 22328. 7 Carmo M, Fritz D L, Mergel J, et al. Journal of Hydrogen Energy, 2013, 38(12), 4901. 8 Balogun M S, Qiu W T, Huang Y C, et al. Advanced Materials, 2017, 29(34), 1702095. 9 Haug P, Koj M, Turek T. International Journal of Hydrogen Energy, 2017, 42(15), 9406. 10 Schmidt O, Gambhir A, Staffell I, et al. International Journal of Hydrogen Energy, 2017, 42(52), 30470. 11 Xu Q C, Zhang L Y, Zhang J H, et al. EnergyChem, 2022, 4(5), 100087. 12 Guo D D, Chi J, Yu H M, et al. Energies, 2022, 15(13), 4645. 13 Thangavel P, Ha M, Kumaraguru S, et al. Energy & Environmental Science, 2020, 13(10), 3447. 14 Xiao C L, Li Y B, Lu X Y, et al. Advanced Functional Materials, 2016, 26(20), 3515. 15 Choi W S, Jang M J, Park Y S, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 38663. 16 Park Y S, Yang J, Lee J, et al. Applied Catalysis B: Environmental, 2020, 278, 119276. 17 Mu X M, Wang K, Lv K Y, et al. ACS Applied Materials & Interfaces, 2023, 15(13), 16552. 18 Razmjooei F, Morawietz T, Taghizadeh E, et al. Joule, 2021, 5(7), 1776 19 Cho M K, Park H Y, Lee H J, et al. Journal of Power Sources, 2018, 382, 22. 20 Zhang J F, Liu Y, Zhu W K, et al. Cell Reports Physical Science, 2021, 2(3), 100377. 21 Yin Y, Liu J, Chang Y F, et al. Electrochimica Acta, 2019, 296, 450. 22 Wan L, Xu Z A, Wang P C, et al. Chemical Engineering Journal, 2022, 431, 133942. 23 Zhao S, Yu H R, Maric R, et al. Journal of the Electrochemical Society, 2015, 162(12), F1292. 24 Schonvogel D, Hülstede J, Wagner P, et al. Journal of the Electrochemical Society, 2017, 164(9), F995. 25 Li K, Yu S, Li D, et al. ACS Applied Materials & Interfaces, 2021, 13(43), 50957. 26 Zhang Y, Liu T, Dong D, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24248.