Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040218-11    https://doi.org/10.11896/cldb.22040218
  金属与金属基复合材料 |
不锈钢催化电极在氧析出中的研究进展
王叶超1, 肖遥2, 胡芳馨1, 杨鸿斌1,*
1 苏州科技大学材料科学与工程学院,江苏 苏州 215009
2 三一集团,长沙 410100
Research Progress of Stainless Steel Catalytic Electrode Towards Oxygen Evolution
WANG Yechao1, XIAO Yao2, HU Fangxin1, YANG Hongbin1,*
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 SANY Group, Changsha 410100, China
下载:  全 文 ( PDF ) ( 41258KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着日益增长的低碳减排需求,氢的绿色制取技术受到广泛重视,利用可再生能源进行电解水制氢是目前众多氢气制备方法中碳排放量最低的工艺。电解水过程由析氢反应(HER)和析氧反应(OER)两个反应构成,其中,OER需要四电子参与,反应动力学较慢,需要较高的过电位,消耗能量较高。目前,缺乏高效、廉价的OER催化剂成为制约电解水制氢发展的主要瓶颈。相比于已报道的许多贵金属催化剂而言,不锈钢基材料具有高导电性、低成本且表现出较好的OER性能,因此受到广泛关注,如何进一步提高不锈钢材料的电化学催化活性是现阶段研究的热点。本文综述了不锈钢基材料作为OER催化材料的研究进展,总结了提升OER催化性能的策略,最后对不锈钢基OER催化电极的发展进行了展望。本文将为不锈钢基催化电极的水氧化反应研究提供十分重要的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王叶超
肖遥
胡芳馨
杨鸿斌
关键词:  不锈钢  电解水  析氧反应(OER)  析氢反应(HER)  催化剂    
Abstract: With the increasing demand of low carbon emission reduction, the green hydrogen production technology has been paid great attention. Hydrogen production from water electrolysis using renewable energy is one of the lowest carbon emission method among many hydrogen producing technology. The water electrolysis process consists of hydrogen evolution reaction (HER) and water oxidation reaction (OER). OER undergoes a four electrons reaction, which presents a slow reaction kinetics and requires high overpotential as well as consumes high energy. At present, the lack of efficient and cheap OER catalyst has become the main bottleneck restricting the development of hydrogen production from electrolytic water. Compared with noble metal catalysts, stainless steel-based materials with high conductivity, low cost and excellent OER catalytic activity have attracted widespread attention. The investigations concerning further improve the electrochemical catalytic activity of stainless steel-based materials is the focus of current research. This paper reviews the research progress of stainless steel-based material towards OER, summarizes the strategies for improving the OER catalytic performance and finally prospects the development of stainless steel-based OER catalytic electrode. This paper will provide a very important reference for the investigation of water oxidation reaction of stainless steel based catalytic electrode.
Key words:  stainless steel    electrolysis of water    oxygen evolution reaction    hydrogen evolution reaction    catalyst
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  O643  
基金资助: 国家自然科学基金(22075195)
通讯作者:  *杨鸿斌,苏州科技大学材料科学与工程学院教授。在复旦大学获理学博士学位,并在新加坡南洋理工大学开展研究工作。研究专注于光电化学及非贵金属电催化剂设计、应用方面的研究。在相关领域杂志Nature Energy、Nature Catalysis、Nature Communication等发表论文140余篇,论文被引用13 000余次。yanghb@usts.edu.cn   
作者简介:  王叶超,2019年6月毕业于苏州大学文正学院,获得学士学位。现为苏州科技大学物理科学与技术学院硕士研究生,在杨鸿斌教授的指导下进行材料电化学研究。
引用本文:    
王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
WANG Yechao, XIAO Yao, HU Fangxin, YANG Hongbin. Research Progress of Stainless Steel Catalytic Electrode Towards Oxygen Evolution. Materials Reports, 2023, 37(20): 22040218-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040218  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040218
1 Götz M, Lefebvre J, Mörs F, et al. Renewable Energy, 2016, 85, 1371.
2 Formal F L, Bourée W S, Prévot M S, et al. Chimia International Journal for Chemistry, 2015, 69(12), 789.
3 Lu Qipeng, Yu Yifu, Ma Qinglang, et al. Advanced Materials, 2016, 28(10), 1917.
4 Wang J, Zhang H, Wang X, et al. Small Methods, 2017, 1(6), 1700118.
5 Zhang X, Lai Z, Tan C, et al. Angewandte Chemie International Edition, 2016, 55(31), 8816.
6 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 46(8), 2060.
7 Chen D J, Chen C, Baiyee Z M, et al. Chemical Reviews, 2015, 115(18), 9869.
8 Xu X B, Zhong W, Zhang L, et al. International Journal of Hydrogen Energy, 2020, 45(4), 17329.
9 Huang X K. Preparation of supported transition metal phosphating electrocatalyst and its performance in water electrolysis. Master’s Thesis, Lanzhou University, China, 2020(in Chinese).
黄晓康. 负载型过渡金属磷化物电催化剂的制备及其电解水性能研究. 硕士学位论文, 兰州大学, 2020.
10 Wang N. Preparation and electrochemical properties of transition metal boride composites. Master’s Thesis, Qingdao University of Science and Technology, China, 2022(in Chinese).
王宁. 过渡金属硼化物复合材料的制备及其电化学性能研究. 硕士学位论文, 青岛科技大学, 2022.
11 Lee Y, Suntivich J, May K J, et al. Journal of Physical Chemistry Letters, 2015, 3(3), 399.
12 Zhou X M, Xia Z M, Tian Z, et al. Journal of Materials Chemistry A, 2015, 3(15), 8107.
13 Yu M Q, Li Y H, Yang S, et al. Journal of Materials Chemistry, 2015, 3(7), 14101.
14 Song F, Hu X. Nature Communications, 2014, 5(1), 4477.
15 Yang Q, Li T, Lu Z Y, et al. Nanoscale, 2014, 6(20), 11789.
16 Arenas L F, Ponce de León C, Walsh F C. Electrochemistry Communications, 2017, 77, 133.
17 Sagu J S, Upul Wijayantha K G, Bohm M, et al. Advanced Engineering Materials, 2016, 18(6), 1059.
18 Wind J, Lacroix A, Braeuninger S, et al. Handbook of fuel cells fundamentals, technology and applications, UK, 2003, pp. 294
19 Dumas C, Mollica A, Feron D, et al. Electrochimica Acta, 2008, 53(2), 468.
20 Suh Y D, Jung J, Lee H, et al. Journal of Materials Chemistry, 2016, 5(4), 791.
21 Vesel A, Balat-Pichelin M. Vacuum, 2014, 100, 71.
22 Sengil I A, Oezacar M. Journal of Hazardous Materials, 2006, 137(2), 1197.
23 Dinamani M, Kamath P V. Journal of Applied Electrochemistry, 2000, 30(10), 1157.
24 Jadhav, Amol R, Puguan, et al. ACS Sustainable Chemistry, 2017, 5(11), 11069.
25 Tiwari S K, Singh A K L, Singh R N. Journal of Electroanalytical Che-mistry and Interfacial Electrochemistry, 1991, 319(1-2), 263.
26 Moureaux F, Stevens P, Toussaint G, et al. Power Sources, 2013, 229, 123.
27 Yu F, Li F, Sun L. International Journal of Hydrogen Energy, 2016, 41(10), 5230.
28 LyonsM E G, Brandon M P. Journal of Electroanalytical Chemistry, 2010, 641(1-2), 119.
29 Moureaux F. Etude des réactions mettant en jeu l’oxygène dans un système électrochimique lithium-air aqueux rechargeable électriquement. Ph.D. Thesis, Grenoble-INP, French,2011.
30 Schäfer H, Beladi-Mousavi S M, Walder L, et al. ACS Catalysis, 2015, 5, 2671.
31 Schäfer H, Küpper K, Wollschläger J, et al. ChemSusChem 2015, 8, 3099.
32 Liu X, Kai S, Wang Y, et al. Catalysis Communications, 2008, 9(14), 2316.
33 Xanthopoulou G. Applied Catalysis A General, 1999, 187(1), 79.
34 Marono M, Sanchez J M, Ruiz E. International Journal of Hydrogen Energy, 2010, 35(1), 37.
35 Todoroki N, Wadayama T. Electrochemistry Communications, 2020, 122.
36 Zhu S L. Study on surface modification and electrochemical properties of stainless steel electrode. Master’s Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese).
朱思璐. 不锈钢基电极的表面改性及其电化学性能研究. 硕士学位论文, 北京化工大学, 2020.
37 Zhong H, Wang J, Meng F, et al. Angewandte Chemie International Edition, 2016, 55(34), 9937.
38 Huang X, Chang S, Lee W S V, et al. Materials Chemistry A, 2017, 5, 18176.
39 Wang L, Huang X, Jiang S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40281.
40 Tang D, Mabayoje O, Lai Y, et al. ChemistrySelect, 2017, 2(7), 2230.
41 Schäfer H, Chevrier D M, Zhang P, et al. Advanced Functional Materials, 2016, 26(35), 6402.
42 Figueiredo, J L, Santos, et al. Quimica Nova, 2013, 36(8), 1176.
43 Hu C C, Wu Y R. Materials Chemistry and Physics, 2003, 82(3), 588.
44 Su C, Li W, Liu X, et al. Environment Science Engineering, 2016, 10, 37.
45 Trinh Q H, Mok Y S. Catalysts, 2015, 5, 800.
46 LianZ H, Ma J Z, He H. Catalysis Communications, 2015, 59, 156.
47 Minoh L, Shincheon J M, Yeon L S, et al. ACS Applied Materials & Interfaces, 2018, 10, 24499.
48 Liu X, You B, Sun Y. ACS Sustainable Chemistry Engineering, 2017, 5, 4778.
49 Muhammad-Sadeeq Balogun, Weitao Qiu, Yongchao Huang, et al. Advanced Materials, 2017, 29(34), 1.
50 Yu F, Li F, Sun L. International Journal of Hydrogen Energy, 2016, 41(10), 5230.
51 Junsong Chen, Jiawen Ren, Menny Shalom, et al. ACS Applied Mate-rials & Interfaces, 2016, 8(8), 5509.
52 Schfer H, Sadaf S, Walder L, et al. Energy & Environmental Science, 2015, 8, 2685.
53 Wei J J. Study on properties of hydrogen evolution and total water decomposition of phosphorus-doped molybdenum oxide and modified stainless steel. Master’s Thesis, Hunan University, China, 2019(in Chinese).
韦晶晶. 磷掺杂钼基氧化物及改性不锈钢的析氢和全分解水性能研究. 硕士学位论文 湖南大学, 2019.
54 Yao Xiao, Tao Hu, Xing Zhao, et al. Nano Energy, 2020, 75, 104949.
55 Junyu Shen, Mei Wang, Liang Zhao, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8786.
56 Zhang Q, Zhong H, Meng F, et al. Nano Research, 2018, 11, 1294.
57 Kanan M W, Nocera D G. Science, 2008, 321(5892), 1072.
58 Schäfer H, Chevrier D M, Kuepper K, et al. Energy & Environmental Science, 2016, 9, 2609.
59 Aric A S, Bruce P, Scrosati B, et al. Nature Materials, 2005, 4(5), 366.
60 Zeng Q L. Preparation of stainless steel base alkaline water electrolysis catalyst by electrodeposition and its properties. Master’s Thesis, Jiangxi University of Science and Technology, China, 2021(in Chinese).
曾庆乐. 电沉积法制备不锈钢基碱性电解水催化剂及性能研究. 硕士学位论文, 江西理工大学, 2021.
61 Li Z, Shao M, An H, et al. Chemical Science, 2015, 6, 6624.
62 Xiao K, Xiao T, Zhang Y, et al. Chemical Communications, 2019, 55(17), 2513.
63 Zhang J W. Nanostructure design and water electrolysis performance of Stainless Steel Transition Metal phosphide, Master’s Thesis, Jiangsu University, China, 2019(in Chinese).
张继伟. 不锈钢基过渡金属磷化物纳米结构设计及电解水性能研究. 硕士学位论文, 江苏大学, 2019.
64 Tan Q R. Effect of three-dimensional stainless steel mesh on electrocatalytic performance of several transition metal compounds. Master’s Thesis, Hunan University, China, 2021(in Chinese).
谭琪荣. 三维不锈钢网对几种过渡金属化合物电催化性能的影响研究. 硕士学位论文, 湖南大学, 2021.
65 Wang L, Huang X, Jiang S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40281.
66 Chen J S, Ren J, Shalom M. ACS Applied Materials & Interfaces, 2016, 8(8), 5509.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[3] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[4] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[5] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[6] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[7] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[8] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[9] 朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
[10] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[11] 程尚华, 李方亮, 张一琪, 武少杰, 程方杰. 氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响[J]. 材料导报, 2023, 37(18): 22020113-6.
[12] 韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
[13] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[14] 汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
[15] 林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed