Research Progress of Stainless Steel Catalytic Electrode Towards Oxygen Evolution
WANG Yechao1, XIAO Yao2, HU Fangxin1, YANG Hongbin1,*
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 2 SANY Group, Changsha 410100, China
Abstract: With the increasing demand of low carbon emission reduction, the green hydrogen production technology has been paid great attention. Hydrogen production from water electrolysis using renewable energy is one of the lowest carbon emission method among many hydrogen producing technology. The water electrolysis process consists of hydrogen evolution reaction (HER) and water oxidation reaction (OER). OER undergoes a four electrons reaction, which presents a slow reaction kinetics and requires high overpotential as well as consumes high energy. At present, the lack of efficient and cheap OER catalyst has become the main bottleneck restricting the development of hydrogen production from electrolytic water. Compared with noble metal catalysts, stainless steel-based materials with high conductivity, low cost and excellent OER catalytic activity have attracted widespread attention. The investigations concerning further improve the electrochemical catalytic activity of stainless steel-based materials is the focus of current research. This paper reviews the research progress of stainless steel-based material towards OER, summarizes the strategies for improving the OER catalytic performance and finally prospects the development of stainless steel-based OER catalytic electrode. This paper will provide a very important reference for the investigation of water oxidation reaction of stainless steel based catalytic electrode.
1 Götz M, Lefebvre J, Mörs F, et al. Renewable Energy, 2016, 85, 1371. 2 Formal F L, Bourée W S, Prévot M S, et al. ChimiaInternational Journal for Chemistry, 2015, 69(12), 789. 3 Lu Qipeng, Yu Yifu, Ma Qinglang, et al. Advanced Materials, 2016, 28(10), 1917. 4 Wang J, Zhang H, Wang X, et al. Small Methods, 2017, 1(6), 1700118. 5 Zhang X, Lai Z, Tan C, et al. Angewandte Chemie International Edition, 2016, 55(31), 8816. 6 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 46(8), 2060. 7 Chen D J, Chen C, Baiyee Z M, et al. Chemical Reviews, 2015, 115(18), 9869. 8 Xu X B, Zhong W, Zhang L, et al. International Journal of Hydrogen Energy, 2020, 45(4), 17329. 9 Huang X K. Preparation of supported transition metal phosphating electrocatalyst and its performance in water electrolysis. Master’s Thesis, Lanzhou University, China, 2020(in Chinese). 黄晓康. 负载型过渡金属磷化物电催化剂的制备及其电解水性能研究. 硕士学位论文, 兰州大学, 2020. 10 Wang N. Preparation and electrochemical properties of transition metal boride composites. Master’s Thesis, Qingdao University of Science and Technology, China, 2022(in Chinese). 王宁. 过渡金属硼化物复合材料的制备及其电化学性能研究. 硕士学位论文, 青岛科技大学, 2022. 11 Lee Y, Suntivich J, May K J, et al. Journal of Physical Chemistry Letters, 2015, 3(3), 399. 12 Zhou X M, Xia Z M, Tian Z, et al. Journal of Materials Chemistry A, 2015, 3(15), 8107. 13 Yu M Q, Li Y H, Yang S, et al. Journal of Materials Chemistry, 2015, 3(7), 14101. 14 Song F, Hu X. Nature Communications, 2014, 5(1), 4477. 15 Yang Q, Li T, Lu Z Y, et al. Nanoscale, 2014, 6(20), 11789. 16 Arenas L F, Ponce de León C, Walsh F C. Electrochemistry Communications, 2017, 77, 133. 17 Sagu J S, Upul Wijayantha K G, Bohm M, et al. Advanced Engineering Materials, 2016, 18(6), 1059. 18 Wind J, Lacroix A, Braeuninger S, et al. Handbook of fuel cells fundamentals, technology and applications, UK, 2003, pp. 294 19 Dumas C, Mollica A, Feron D, et al. Electrochimica Acta, 2008, 53(2), 468. 20 Suh Y D, Jung J, Lee H, et al. Journal of Materials Chemistry, 2016, 5(4), 791. 21 Vesel A, Balat-Pichelin M. Vacuum, 2014, 100, 71. 22 Sengil I A, Oezacar M. Journal of Hazardous Materials, 2006, 137(2), 1197. 23 Dinamani M, Kamath P V. Journal of Applied Electrochemistry, 2000, 30(10), 1157. 24 Jadhav, Amol R, Puguan, et al. ACS Sustainable Chemistry, 2017, 5(11), 11069. 25 Tiwari S K, Singh A K L, Singh R N. Journal of Electroanalytical Che-mistry and Interfacial Electrochemistry, 1991, 319(1-2), 263. 26 Moureaux F, Stevens P, Toussaint G, et al. Power Sources, 2013, 229, 123. 27 Yu F, Li F, Sun L. International Journal of Hydrogen Energy, 2016, 41(10), 5230. 28 LyonsM E G, Brandon M P. Journal of Electroanalytical Chemistry, 2010, 641(1-2), 119. 29 Moureaux F. Etude des réactions mettant en jeu l’oxygène dans un système électrochimique lithium-air aqueux rechargeable électriquement. Ph.D. Thesis, Grenoble-INP, French,2011. 30 Schäfer H, Beladi-Mousavi S M, Walder L, et al. ACS Catalysis, 2015, 5, 2671. 31 Schäfer H, Küpper K, Wollschläger J, et al. ChemSusChem 2015, 8, 3099. 32 Liu X, Kai S, Wang Y, et al. Catalysis Communications, 2008, 9(14), 2316. 33 Xanthopoulou G. Applied Catalysis A General, 1999, 187(1), 79. 34 Marono M, Sanchez J M, Ruiz E. International Journal of Hydrogen Energy, 2010, 35(1), 37. 35 Todoroki N, Wadayama T. Electrochemistry Communications, 2020, 122. 36 Zhu S L. Study on surface modification and electrochemical properties of stainless steel electrode. Master’s Thesis, Beijing University of Chemical Technology, China, 2020(in Chinese). 朱思璐. 不锈钢基电极的表面改性及其电化学性能研究. 硕士学位论文, 北京化工大学, 2020. 37 Zhong H, Wang J, Meng F, et al. Angewandte Chemie International Edition, 2016, 55(34), 9937. 38 Huang X, Chang S, Lee W S V, et al. Materials ChemistryA, 2017, 5, 18176. 39 Wang L, Huang X, Jiang S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40281. 40 Tang D, Mabayoje O, Lai Y, et al. ChemistrySelect, 2017, 2(7), 2230. 41 Schäfer H, Chevrier D M, Zhang P, et al. Advanced Functional Materials, 2016, 26(35), 6402. 42 Figueiredo, J L, Santos, et al. Quimica Nova, 2013, 36(8), 1176. 43 Hu C C, Wu Y R. Materials Chemistry and Physics, 2003, 82(3), 588. 44 Su C, Li W, Liu X, et al. Environment Science Engineering, 2016, 10, 37. 45 Trinh Q H, Mok Y S. Catalysts, 2015, 5, 800. 46 LianZ H, Ma J Z, He H. Catalysis Communications, 2015, 59, 156. 47 Minoh L, Shincheon J M, Yeon L S, et al. ACS Applied Materials & Interfaces, 2018, 10, 24499. 48 Liu X, You B, Sun Y. ACS Sustainable Chemistry Engineering, 2017, 5, 4778. 49 Muhammad-Sadeeq Balogun, Weitao Qiu, Yongchao Huang, et al. Advanced Materials, 2017, 29(34), 1. 50 Yu F, Li F, Sun L. International Journal of Hydrogen Energy, 2016, 41(10), 5230. 51 Junsong Chen, Jiawen Ren, Menny Shalom, et al. ACS Applied Mate-rials & Interfaces, 2016, 8(8), 5509. 52 Schfer H, Sadaf S, Walder L, et al. Energy & Environmental Science, 2015, 8, 2685. 53 Wei J J. Study on properties of hydrogen evolution and total water decomposition of phosphorus-doped molybdenum oxide and modified stainless steel. Master’s Thesis, Hunan University, China, 2019(in Chinese). 韦晶晶. 磷掺杂钼基氧化物及改性不锈钢的析氢和全分解水性能研究. 硕士学位论文 湖南大学, 2019. 54 Yao Xiao, Tao Hu, Xing Zhao, et al. Nano Energy, 2020, 75, 104949. 55 Junyu Shen, Mei Wang, Liang Zhao, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8786. 56 Zhang Q, Zhong H, Meng F, et al. Nano Research, 2018, 11, 1294. 57 Kanan M W, Nocera D G. Science, 2008, 321(5892), 1072. 58 Schäfer H, Chevrier D M, Kuepper K, et al. Energy & Environmental Science, 2016, 9, 2609. 59 Aric A S, Bruce P, Scrosati B, et al. Nature Materials, 2005, 4(5), 366. 60 Zeng Q L. Preparation of stainless steel base alkaline water electrolysis catalyst by electrodeposition and its properties. Master’s Thesis, Jiangxi University of Science and Technology, China, 2021(in Chinese). 曾庆乐. 电沉积法制备不锈钢基碱性电解水催化剂及性能研究. 硕士学位论文, 江西理工大学, 2021. 61 Li Z, Shao M, An H, et al. Chemical Science, 2015, 6, 6624. 62 Xiao K, Xiao T, Zhang Y, et al. Chemical Communications, 2019, 55(17), 2513. 63 Zhang J W. Nanostructure design and water electrolysis performance of Stainless Steel Transition Metal phosphide, Master’s Thesis, Jiangsu University, China, 2019(in Chinese). 张继伟. 不锈钢基过渡金属磷化物纳米结构设计及电解水性能研究. 硕士学位论文, 江苏大学, 2019. 64 Tan Q R. Effect of three-dimensional stainless steel mesh on electrocatalytic performance of several transition metal compounds. Master’s Thesis, Hunan University, China, 2021(in Chinese). 谭琪荣. 三维不锈钢网对几种过渡金属化合物电催化性能的影响研究. 硕士学位论文, 湖南大学, 2021. 65 Wang L, Huang X, Jiang S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40281. 66 Chen J S, Ren J, Shalom M. ACS Applied Materials & Interfaces, 2016, 8(8), 5509.