Abstract: A50∶50 water-based Ni0.5Zn0.5Fe2O4-SiC binary hybrid magnetic fluid was prepared by a two-step method to improve the thermal properties and lubricity of water-based magnetic fluid and meet the fluid standard of the hydraulic transmission medium. This experiment will examine the sedimentation stability of binary hybrid magnetic fluid under the gravity filed and its layering stability under the magnetic field, selecting the binary hybrid magnetic fluid with the highest level of stability. The differences in rheological properties, thermal properties and low-speed lubricity between binary hybrid magnetic fluid and unitary magnetic fluid were analyzed, where a hydraulic system was built to test the temperature rise characteristics of the system under various medium conditions. The results show that the coating effect of Ni0.5Zn0.5Fe2O4 nanoparticles performs best when the mass fractions of OA and SDBS are 3.0% and 2.0%, respectively. While the mass fraction of CMC is 0.3%—0.6%, it has a significant wetting and dispersing effect on SiC nanoparticles. The delamination stability of binary hybrid magnetic fluid in magnetic field increases with the increase of CMC mass fraction. Under the same dispersion conditions, the viscosity reduces by 21.07% at 80 mT, and the thermal conductivity increases by 26.26% and 25.48% at 40 ℃ and 70 ℃ respectively. In conclusion, the low-speed lubricity of binary hybrid magnetic fluid is better, whereas the temperature rise in the hydraulic system is slower.
1 Rosensweig R E. Ferrohydrodynamics, Cambridge University Press, UK, 1985, pp. 1. 2 Li S J, Bao W. Mechanical Systems and Signal Processing, 2008, 22(4), 1008. 3 Hu Z S, Wu Z Y, Mo Z Y, et al. Journal of Engineering Thermophysics, 2018, 39(6), 1205(in Chinese). 胡臻尚, 吴张永, 莫子勇, 等. 工程热物理学报, 2018, 39(6), 1205. 4 Zhu Q C. Experimental study on preparation and magnetic viscosity characteristics of magnetic fluid hydraulic medium. Master’s Thesis, Kunming University of Science and Technology, China, 2019(in Chinese). 朱启晨. 磁流体液压介质制备与磁粘特性试验研究. 硕士学位论文, 昆明理工大学, 2019. 5 Chen W, Wu Z Y, Zhang L Z, et al. Chemical Industry and Engineering Progress, 2019, 38(6), 2665(in Chinese). 陈文, 吴张永, 张莲芝, 等. 化工进展, 2019, 38(6), 2665. 6 Mohammadfam Y, Heris S Z, Khazini L, et al. Tribology International, 2020, 142, 105995. 7 Wang Z Q, Fu Q, Wood R J K, et al. Tribology International, 2020, 144, 106100. 8 Chen Y, Zhang J H, Xu B, et al. Tribology International, 2019, 138, 316. 9 Yin Y B. Theory and application of advanced hydraulic component, Shanghai Scientific and Technical Publishers, China, 2017, pp. 1(in Chinese). 訚耀保. 高端液压元件理论与实践, 上海科学技术出版社, 2017, pp. 1. 10 Wang J M. Magnetic Fluid Lubrication Theory of Oil Film Bearings, Metallurgical Industry Press, China, 2019, pp. 80(in Chinese). 王建梅. 油膜轴承磁流体润滑理论, 冶金工业出版社, 2019, pp. 80. 11 Wu S F. Simulation research on lubrication-bearing mechanism and experiment study on friction-wear for port pair with bionic non-smooth surface. Ph. D. Thesis, Yanshan University, China, 2017(in Chinese). 毋少峰. 仿生非光滑表面配流副润滑承载机理数值模拟及摩擦磨损实验研究. 博士学位论文, 燕山大学, 2017. 12 Zhu Y, Chen X, Zou J, et al. Wear, 2015, 338, 406. 13 Kao M J, Lin C R. Journal of Alloys and Compounds, 2009, 483(1-2), 456. 14 Luo T, Wei X W, Zhao H Y, et al. Ceramics International, 2014, 40(7), 10103. 15 Khadem M, Penkov O V, Pukha V E, et al. RSC Advances, 2016, 6(62), 56918. 16 Zhang X, Li C, Zhang Y, et al. International Journal of Advanced Manufacturing Technology, 2016, 86, 3427. 17 Yao Y W, Wu Z Y, Zhu Q C, et al. Journal of Engineering Thermophysics, 2022, 43(3), 817(in Chinese). 姚勇伟, 吴张永, 朱启晨, 等. 工程热物理学报, 2022, 43(3), 817. 18 Cai Z P, Tian M C, Zhang G M. Materials Reports, 2022, 36(3), 20100213-8(in Chinese). 蔡中盼, 田茂诚, 张冠敏. 材料导报, 2022, 36(3), 20100213-8. 19 Sahoo R R. Powder Technology, 2020, 370, 19. 20 Ma M Y, Zhai Y L, Xuan Z H, et al. Chemical Industry and Engineering Progress, 2021, 40(8), 4179(in Chinese). 马明琰, 翟玉玲, 轩梓灏, 等. 化工进展, 2021, 40(8), 4179. 21 Mi X, Gong J, Cao W H, et al. Materials Reports, 2017, 31(18), 102(in Chinese). 米翔, 龚俊, 曹文翰, 等. 材料导报, 2017, 31(18), 102. 22 Bajorek A, Berger C, Dulski M, et al. Journal of Physics and Chemistry of Solids, 2019, 129, 1. 23 Xu L. Study on the lubrication characteristics of the valve plate bearing in hydraulic axial piston pump. Ph. D. Thesis, Beijing Institute of Techno-logy, China, 2016(in Chinese). 许路. 高压高速轴向柱塞泵配流副润滑特性研究. 博士学位论文, 北京理工大学, 2016. 24 Guo C X, Wu Z Y, Wang H, et al. Materials Reports, 2021, 35(8), 8028(in Chinese). 郭翠霞, 吴张永, 王航, 等. 材料导报, 2021, 35(8), 8028. 25 Sahoo R, Ussa-Aldana P, Lancon D, et al. Tribology International, 2022, 166, 107346. 26 Sahoo R R, Kumar V. International Communications in Heat and Mass Transfer, 2020, 111, 104451. 27 Li C H, Zhang Y B, Yang M. Thermodynamic mechanism of nano fluid micro lubrication grinding, Science Press, China, 2019, pp. 203(in Chinese). 李长河, 张彦彬, 杨敏. 纳米流体微量润滑磨削热力学作用机理, 科学出版社, 2019, pp. 203. 28 Morillas J R, de Vicente J. Soft Matter, 2020, 16(42), 9614. 29 蒋佳骏, 吴张永, 李华, 等. 中国专利, CN114001023A, 2022. 30 Jiang J J, Wu Z Y, Li H, et al. In: Advanced Manufacturing and Automation XI. Zhengzhou, China, 2022, pp. 148. 31 Yang Y J, Wu Z Y, Jiang J J, et al. Chinese Hydraulics & Pneumatics, 2021, 45(4), 146.(in Chinese). 杨瑜君, 吴张永, 蒋佳骏, 等. 液压与气动, 2021, 45(4), 146. 32 Fan Z H, Zhou Y T, Yang H L, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2022, 39(6), 14(in Chinese). 范子红, 周雨婷, 杨海林, 等. 重庆工商大学学报(自然科学版), 2022, 39(6), 14. 33 Zhao Y T. Thermal transfer and tribological behavior of TiO2 Nanofluids, China University of Mining and Technology Press, China, 2018, pp. 93(in Chinese). 赵永涛. TiO2纳米流体热传输及摩擦学行为研究, 中国矿业大学出版社, 2018, pp. 93.