Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040257-8    https://doi.org/10.11896/cldb.22040257
  无机非金属及其复合材料 |
水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性
蒋佳骏, 吴张永*, 朱启晨
昆明理工大学机电工程学院,昆明 650500
Stability, Rheological Properties, Thermal Properties and Low-speed Lubricity of Water-based Ni0.5Zn0.5Fe2O4-SiC Binary Hybrid Magnetic Fluid
JIANG Jiajun, WU Zhangyong*, ZHU Qichen
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 18312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善纳米水基磁流体的热物性和低速润滑性,匹配液压传动特性需求,采用两步法制备体积比50∶50水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体,并研究了重力场下其沉降稳定性和磁场下的分层稳定性,遴选出稳定性良好的二元混合磁流体样品,分析了二元混合磁流体和一元磁流体在流变性、热物性和低速润滑性上的性能差异,并搭建液压系统测试了不同介质条件下的系统温升特性。结果表明:OA和SDBS的质量分数分别为3.0%和2.0%时,Ni0.5Zn0.5Fe2O4纳米颗粒包覆效果最佳;CMC质量分数为0.3%~0.6%时,对SiC纳米颗粒润湿分散作用显著;二元混合磁流体在磁场条件下的分层稳定性随着CMC质量分数的增加而提高。在相同分散条件下,二元混合磁流体相较于一元磁流体,80 mT下粘度减小21.07%,40 ℃和70 ℃下热导率分别增加了26.26%和25.48%;二元混合磁流体的低速润滑性能更好,在液压系统中的温升更缓。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋佳骏
吴张永
朱启晨
关键词:  二元混合磁流体  液压介质  流变性  稳定性  热物性  低速润滑性    
Abstract: A50∶50 water-based Ni0.5Zn0.5Fe2O4-SiC binary hybrid magnetic fluid was prepared by a two-step method to improve the thermal properties and lubricity of water-based magnetic fluid and meet the fluid standard of the hydraulic transmission medium. This experiment will examine the sedimentation stability of binary hybrid magnetic fluid under the gravity filed and its layering stability under the magnetic field, selecting the binary hybrid magnetic fluid with the highest level of stability. The differences in rheological properties, thermal properties and low-speed lubricity between binary hybrid magnetic fluid and unitary magnetic fluid were analyzed, where a hydraulic system was built to test the temperature rise characteristics of the system under various medium conditions. The results show that the coating effect of Ni0.5Zn0.5Fe2O4 nanoparticles performs best when the mass fractions of OA and SDBS are 3.0% and 2.0%, respectively. While the mass fraction of CMC is 0.3%—0.6%, it has a significant wetting and dispersing effect on SiC nanoparticles. The delamination stability of binary hybrid magnetic fluid in magnetic field increases with the increase of CMC mass fraction. Under the same dispersion conditions, the viscosity reduces by 21.07% at 80 mT, and the thermal conductivity increases by 26.26% and 25.48% at 40 ℃ and 70 ℃ respectively. In conclusion, the low-speed lubricity of binary hybrid magnetic fluid is better, whereas the temperature rise in the hydraulic system is slower.
Key words:  binary hybrid magnetic fluid    hydraulic medium    rheological properties    stability    thermal properties    low-speed lubricity
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51165012);四川省区域创新合作项目(2022YFQ0084);昆明理工大学分析测试基金(2021P20203103003)
通讯作者:  *吴张永,昆明理工大学机电工程学院教授、博士研究生导师,昆明理工大学功能流体应用学科方向团队负责人。1986年在昆明工学院获学士学位,1995年在昆明理工大学获硕士学位。长期从事流体传动与控制、机械制造、有色金属矿山及冶金装备领域的教学及科研工作。发表学术论文100余篇,申请专利200余项,其中授权国家发明专利20项。zhyongwu63@163.com   
作者简介:  蒋佳骏,2018年7月毕业于上海电机学院,获得工学学士学位。现为昆明理工大学在读博士研究生(硕博连读)。目前主要从事新型液压介质及元件、极端环境液压传动技术的研究。
引用本文:    
蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
JIANG Jiajun, WU Zhangyong, ZHU Qichen. Stability, Rheological Properties, Thermal Properties and Low-speed Lubricity of Water-based Ni0.5Zn0.5Fe2O4-SiC Binary Hybrid Magnetic Fluid. Materials Reports, 2023, 37(20): 22040257-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040257  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040257
1 Rosensweig R E. Ferrohydrodynamics, Cambridge University Press, UK, 1985, pp. 1.
2 Li S J, Bao W. Mechanical Systems and Signal Processing, 2008, 22(4), 1008.
3 Hu Z S, Wu Z Y, Mo Z Y, et al. Journal of Engineering Thermophysics, 2018, 39(6), 1205(in Chinese).
胡臻尚, 吴张永, 莫子勇, 等. 工程热物理学报, 2018, 39(6), 1205.
4 Zhu Q C. Experimental study on preparation and magnetic viscosity characteristics of magnetic fluid hydraulic medium. Master’s Thesis, Kunming University of Science and Technology, China, 2019(in Chinese).
朱启晨. 磁流体液压介质制备与磁粘特性试验研究. 硕士学位论文, 昆明理工大学, 2019.
5 Chen W, Wu Z Y, Zhang L Z, et al. Chemical Industry and Engineering Progress, 2019, 38(6), 2665(in Chinese).
陈文, 吴张永, 张莲芝, 等. 化工进展, 2019, 38(6), 2665.
6 Mohammadfam Y, Heris S Z, Khazini L, et al. Tribology International, 2020, 142, 105995.
7 Wang Z Q, Fu Q, Wood R J K, et al. Tribology International, 2020, 144, 106100.
8 Chen Y, Zhang J H, Xu B, et al. Tribology International, 2019, 138, 316.
9 Yin Y B. Theory and application of advanced hydraulic component, Shanghai Scientific and Technical Publishers, China, 2017, pp. 1(in Chinese).
訚耀保. 高端液压元件理论与实践, 上海科学技术出版社, 2017, pp. 1.
10 Wang J M. Magnetic Fluid Lubrication Theory of Oil Film Bearings, Metallurgical Industry Press, China, 2019, pp. 80(in Chinese).
王建梅. 油膜轴承磁流体润滑理论, 冶金工业出版社, 2019, pp. 80.
11 Wu S F. Simulation research on lubrication-bearing mechanism and experiment study on friction-wear for port pair with bionic non-smooth surface. Ph. D. Thesis, Yanshan University, China, 2017(in Chinese).
毋少峰. 仿生非光滑表面配流副润滑承载机理数值模拟及摩擦磨损实验研究. 博士学位论文, 燕山大学, 2017.
12 Zhu Y, Chen X, Zou J, et al. Wear, 2015, 338, 406.
13 Kao M J, Lin C R. Journal of Alloys and Compounds, 2009, 483(1-2), 456.
14 Luo T, Wei X W, Zhao H Y, et al. Ceramics International, 2014, 40(7), 10103.
15 Khadem M, Penkov O V, Pukha V E, et al. RSC Advances, 2016, 6(62), 56918.
16 Zhang X, Li C, Zhang Y, et al. International Journal of Advanced Manufacturing Technology, 2016, 86, 3427.
17 Yao Y W, Wu Z Y, Zhu Q C, et al. Journal of Engineering Thermophysics, 2022, 43(3), 817(in Chinese).
姚勇伟, 吴张永, 朱启晨, 等. 工程热物理学报, 2022, 43(3), 817.
18 Cai Z P, Tian M C, Zhang G M. Materials Reports, 2022, 36(3), 20100213-8(in Chinese).
蔡中盼, 田茂诚, 张冠敏. 材料导报, 2022, 36(3), 20100213-8.
19 Sahoo R R. Powder Technology, 2020, 370, 19.
20 Ma M Y, Zhai Y L, Xuan Z H, et al. Chemical Industry and Engineering Progress, 2021, 40(8), 4179(in Chinese).
马明琰, 翟玉玲, 轩梓灏, 等. 化工进展, 2021, 40(8), 4179.
21 Mi X, Gong J, Cao W H, et al. Materials Reports, 2017, 31(18), 102(in Chinese).
米翔, 龚俊, 曹文翰, 等. 材料导报, 2017, 31(18), 102.
22 Bajorek A, Berger C, Dulski M, et al. Journal of Physics and Chemistry of Solids, 2019, 129, 1.
23 Xu L. Study on the lubrication characteristics of the valve plate bearing in hydraulic axial piston pump. Ph. D. Thesis, Beijing Institute of Techno-logy, China, 2016(in Chinese).
许路. 高压高速轴向柱塞泵配流副润滑特性研究. 博士学位论文, 北京理工大学, 2016.
24 Guo C X, Wu Z Y, Wang H, et al. Materials Reports, 2021, 35(8), 8028(in Chinese).
郭翠霞, 吴张永, 王航, 等. 材料导报, 2021, 35(8), 8028.
25 Sahoo R, Ussa-Aldana P, Lancon D, et al. Tribology International, 2022, 166, 107346.
26 Sahoo R R, Kumar V. International Communications in Heat and Mass Transfer, 2020, 111, 104451.
27 Li C H, Zhang Y B, Yang M. Thermodynamic mechanism of nano fluid micro lubrication grinding, Science Press, China, 2019, pp. 203(in Chinese).
李长河, 张彦彬, 杨敏. 纳米流体微量润滑磨削热力学作用机理, 科学出版社, 2019, pp. 203.
28 Morillas J R, de Vicente J. Soft Matter, 2020, 16(42), 9614.
29 蒋佳骏, 吴张永, 李华, 等. 中国专利, CN114001023A, 2022.
30 Jiang J J, Wu Z Y, Li H, et al. In: Advanced Manufacturing and Automation XI. Zhengzhou, China, 2022, pp. 148.
31 Yang Y J, Wu Z Y, Jiang J J, et al. Chinese Hydraulics & Pneumatics, 2021, 45(4), 146.(in Chinese).
杨瑜君, 吴张永, 蒋佳骏, 等. 液压与气动, 2021, 45(4), 146.
32 Fan Z H, Zhou Y T, Yang H L, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2022, 39(6), 14(in Chinese).
范子红, 周雨婷, 杨海林, 等. 重庆工商大学学报(自然科学版), 2022, 39(6), 14.
33 Zhao Y T. Thermal transfer and tribological behavior of TiO2 Nanofluids, China University of Mining and Technology Press, China, 2018, pp. 93(in Chinese).
赵永涛. TiO2纳米流体热传输及摩擦学行为研究, 中国矿业大学出版社, 2018, pp. 93.
[1] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[2] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[3] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[4] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[5] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[6] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[7] 郑家桢, 裴海华, 张贵才, 单景玲, 蒋平. 改性纳米硅颗粒强化高温泡沫的性能及机理研究[J]. 材料导报, 2023, 37(7): 21100066-5.
[8] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[9] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[10] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[11] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[12] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[13] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[14] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[15] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed