Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21030201-13    https://doi.org/10.11896/cldb.21030201
  无机非金属及其复合材料 |
钙钛矿太阳能电池稳定性研究进展及模组产业化趋势
金胜利1,2, 寿春晖1,2,*, 黄绵吉1,2, 贺海晏1,2, 李聪3
1 浙江省太阳能利用与节能技术重点实验室,杭州 311121
2 浙江浙能技术研究院有限公司,杭州 311121
3 西安电子科技大学先进材料与纳米科技学院,西安 710126
Research Progress on Stability of Perovskite Solar Cells and Industrialization Trend of Modules
JIN Shengli1,2, SHOU Chunhui1,2,*, HUANG Mianji1,2, HE Haiyan1,2, LI Cong3
1 Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province,Hangzhou 311121,China
2 Zhejiang Energy R & D Institute Co., Ltd.,Hangzhou 311121,China
3 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
下载:  全 文 ( PDF ) ( 20906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机无机杂化钙钛矿材料具有优异的光电特性,在光伏、显示和传感领域均获得了广泛关注。近年来,钙钛矿太阳能电池技术发展迅速,在效率提升和面积放大方面不断取得突破,但钙钛矿材料和器件的稳定性问题一直没能得到根本性的解决,严重制约了钙钛矿光伏器件的实用性能及商业化推广进程。钙钛矿太阳能电池的不稳定性来源于器件中钙钛矿层、电荷传输材料和电极材料的失效,失效原因主要包括光照、水分、温度和氧气等环境因素,因此深入理解各因素对钙钛矿太阳能电池稳定性的作用机理至关重要。此外,与晶硅和其他薄膜电池相比,钙钛矿太阳能电池在材料性能、器件结构等方面都有较大差别。目前晶硅电池和其他薄膜电池的稳定性评价方法和测试手段对钙钛矿太阳能电池不能完全适用,为了使不同机构间钙钛矿太阳能电池稳定性的测试结果可以对比,需要统一稳定性测试标准。
本文总结了钙钛矿材料及光伏器件稳定性的影响因素,剖析了光照、水分、温度和氧气等环境因素对钙钛矿器件稳定性的作用机理,并对提升钙钛矿太阳能电池稳定性的方法进行了综述。最后分析了钙钛矿太阳能电池稳定性的评价方法和测试手段,并对钙钛矿太阳能电池的未来发展方向进行了预测,以期为钙钛矿太阳能电池商业化应用提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金胜利
寿春晖
黄绵吉
贺海晏
李聪
关键词:  钙钛矿材料  太阳能电池  稳定性  商业化应用    
Abstract: Organic-inorganic hybrid perovskite materials have been widely used in the area of photovoltaic, display devices and sensors because of their excellent photoelectric properties. In recent years, the key technology of perovskite solar cells (PSCs) has developed rapidly, and there are many breakthroughs that have been made in photoelectric conversion efficiency and devices area. However, the stability of perovskite mate-rials and devices has not been fundamentally solved, which seriously restricts the practical performance and commercialization of perovskite photovoltaic devices. The instability of PSCs derived from the perovskite active layer, the charge transport materials and the electrode materials. The causes mainly include environmental factors such as light, water, temperature and oxygen. Therefore, it is crucial to understand the mechanism of each factor on the stability of PSCs. In addition, compared with crystalline silicon solar cells and other thin-film solar cells, PSCs have great differences in material properties and device structures. At present, the stability evaluation methods and testing methods of crystalline silicon cells and other thin film cells are not fully applicable to PSCs. A standard stability tests procedure is required in order to compare the stability test results of perovskite cells between the various institutions.
In this paper, the factors affecting the stability of perovskite materials and photovoltaic devices are firstly summarized. Then the mechanism of environmental factors such as light, moisture, temperature and oxygen on the stability of perovskite devices are analyzed, and the methods to improve the stability of PSCs are summarized. Finally, the stability evaluation and testing methods, as well as the future development direction of PSCs are analyzed and forecasted, which provide a new idea for the commercial application of PSCs.
Key words:  perovskite material    solar cell    stability    industrialization trend
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TM914  
基金资助: 浙江省重点研发计划项目(2021C04009);浙江省太阳能利用与节能技术重点实验室项目(ZNKJ2017083)
通讯作者:  *寿春晖,2012年毕业于浙江大学,获博士学位。现为浙江省太阳能利用与节能技术重点实验室副主任,浙江浙能技术研究院有限公司新能源研究所所长,高级工程师。目前累计发表论文30余篇,获中电联电力科技创新一等奖等,主要研究领域为太阳能电池材料和器件、光伏系统增效和节能技术等。shouchunhui@zjenergy.com.cn   
作者简介:  金胜利,2019年3月毕业于华北电力大学,获工程硕士学位。2019年5月入职浙江浙能技术研究院有限公司,目前主要研究领域为新型太阳能电池材料及器件。近年来作为第一或共同作者在电子材料和器件领域发表多篇论文,包括Advanced Optical Materials、 ACS Applied Materials & Interfaces、Chemical Communications和Energy Technology等。
引用本文:    
金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
JIN Shengli, SHOU Chunhui, HUANG Mianji, HE Haiyan, LI Cong. Research Progress on Stability of Perovskite Solar Cells and Industrialization Trend of Modules. Materials Reports, 2023, 37(5): 21030201-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030201  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21030201
1 Chapin D M, Fuller C S, Pearson G L. Journal of Applied Physics, 1954, 25, 676.
2 Heo J H, Im S H, Noh J H, et al. Nature Photonics, 2013, 7, 486.
3 Laban W A, Etgar L. Energy & Environmental Science, 2013, 6, 3249.
4 Stranks S D, Burlakov V M, Leijtens T, et al. Physical Review Applied, 2014, 2, 034007.
5 Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry, 2013, 52, 9019.
6 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131, 6050.
7 Yang W S, Noh J H, Jeon N J, et al. Science, 2015, 348, 1234.
8 Rong Y, Hu Y, Mei A, et al. Science, 2018, 361, 8235.
9 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10, 391.
10 Chen S, Wen X, Huang S, et al. Solar RRL, 2017, 1, 1600001.
11 Frost J M, Butler K T, Brivio F, et al. Nano Letters, 2014, 14, 2584.
12 Yang J, Siempelkamp B D, Liu D, et al. ACS Nano, 2015, 9, 1955.
13 Bryant D, Aristidou N, Pont S, et al. Energy & Environmental Science, 2016, 9, 1655.
14 Conings B, Drijkoningen J, Gauquelin N, et al. Advanced Energy Materials, 2015, 5, 1500477.
15 Yang X, Yan X, Wang W, et al. Organic Electronics, 2016, 34, 79.
16 Eperon G E, Habisreutinger S N, Leijtens T, et al. ACS Nano, 2015, 9, 9380.
17 Wang Z, Shi Z, Li T, et al. Angewandte Chemie International Edition, 2017, 56, 1190.
18 Zhang H Y. Study on fabrication and stablity of high performance perovskite solar cells. Ph. D. Thesis, Institute of Physics Chinese Aca-demy of Science, China, 2018 (in Chinese).
张慧银. 高效钙钛矿太阳能电池的制备与稳定性研究, 博士学位论文, 中国科学院物理研究所, 2018.
19 Swainson I P, Tucker M G, Wilson D J, et al. Chemistry of Materials, 2007, 19, 2401.
20 Binek A, Hanusch F C, Docampo P, et al. The Journal of Physical Chemistry Letters, 2015, 6, 1249.
21 Lou H R, Ye Z Z, He H P. Acta Physica Sinica, 2019, 68(15), 157102 (in Chinese).
楼浩然, 叶志镇, 何海平. 物理学报, 2019, 68(15),157102.
22 Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, et al. Angewandte Chemie International Edition, 2015, 54, 8208.
23 Gottesman R, Gouda L, Kalanoor B S, et al. The Journal of Physical Chemistry Letters, 2015, 6, 2332.
24 Domanski K, Roose B, Matsui T, et al. Energy & Environmental Science, 2017, 10, 604.
25 Nie W, Blancon J C, Neukirch A J, et al. Nature Communications, 2016, 7, 11574.
26 Hoke E T, Slotcavage D J, Dohner E R, et al. Chemical Science, 2015, 6, 613.
27 Bischak C G, Hetherington C L, Wu H, et al. Nano Letters, 2017, 17, 1028.
28 Wei T C, Wang H P, Li T Y, et al. Advanced Materials, 2017, 29, 1701789.
29 Kirschner M S, Diroll B T, Guo P, et al. Nature Communications, 2019, 10, 504.
30 Mosconi E, Meggiolaro D, Snaith H J, et al. Energy & Environmental Science, 2016, 9, 3180.
31 Tian Y, Merdasa A, Unger E, et al. The Journal of Physical Chemistry Letters, 2015, 6, 4171.
32 Tian Y, Peter M, Unger E, et al. Physical Chemistry Chemical Physics, 2015, 17, 24978.
33 Leijtens T, Eperon G E, Pathak S, et al. Nature Communications, 2013, 4, 2885.
34 Yang J, Siempelkamp B D, Mosconi E, et al. Chemistry of Materials, 2015, 27, 4229.
35 Zhang T, Meng X, Bai Y, et al. Journal of Materials Chemistry A, 2017, 5, 1103.
36 Domanski K, Correa-Baena J P, Mine N, et al. ACS Nano, 2016, 10, 6306.
37 Kato Y, Ono L K, Lee M V, et al. Advanced Materials Interfaces, 2015, 2, 1500195.
38 Bi E, Chen H, Xie F, et al. Nature Communications, 2017, 8, 15330.
39 Liu L, Huang S, Lu Y, et al. Advanced Materials, 2018, 30, 1800544.
40 Van Reenen S, Kemerink M, Snaith H J. The Journal of Physical Che-mistry Letters, 2015, 6, 3808.
41 Shao Y, Fang Y, Li T, et al. Energy & Environmental Science, 2016, 9, 1752.
42 Meggiolaro D, Motti S G, Mosconi E, et al. Energy & Environmental Science, 2018, 11, 702.
43 Xie F, Chen C C, Wu Y, et al. Energy & Environmental Science, 2017, 10, 1942.
44 Park C, Ko H, Sin D H, et al. Advanced Functional Materials, 2017, 27, 1703546.
45 Saliba M, Matsui T, Seo J Y, et al. Energy & Environmental Science, 2016, 9, 1989.
46 Li X, Ibrahim Dar M, Yi C, et al. Nature Chemistry, 2015, 7, 703.
47 Zhao Y, Wei J, Li H, et al. Nature Communications, 2016, 7, 10228.
48 Bi D, Gao P, Scopelliti R, et al. Advanced Materials, 2016, 28, 2910.
49 Wu C, Li H, Yan Y, et al. Solar RRL, 2018, 2, 1800052.
50 Wang Y, Mahmoudi T, Rho W Y, et al. Nano Energy, 2017, 40, 408.
51 Chung C C, Narra S, Jokar E, et al. Journal of Materials Chemistry A, 2017, 5, 13957.
52 Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Advanced Energy Materials, 2018, 8, 1702719.
53 Jin J, Li H, Chen C, et al. ACS Applied Materials & Interfaces, 2017, 9, 42875.
54 Bi C, Zheng X, Chen B, et al. ACS Energy Letters, 2017, 2, 1400.
55 Boopathi K M, Mohan R, Huang T Y, et al. Journal of Materials Che-mistry A, 2016, 4, 1591.
56 Zimmermann I, Gratia P, Martineau D, et al. Journal of Materials Che-mistry A, 2019, 7, 8073.
57 Mei A, Li X, Liu L, et al. Science, 2014, 345, 295.
58 Zhou Y, Wang F, Cao Y, et al. Advanced Energy Materials, 2017, 7, 1701048.
59 Xu Q, Li Z, Liu M, et al. The Journal of Physical Chemistry Letters, 2018, 9, 6948.
60 Wang J, Chen H, Wei S H, et al. Advanced Materials, 2019, 31, 1806593.
61 Noh J H, Im S H, Heo J H, et al. Nano Letters, 2013, 13, 1764.
62 Tai Q, You P, Sang H, et al. Nature Communications, 2016, 7, 11105.
63 Jodlowski A D, Roldán-Carmona C, Grancini G, et al. Nature Energy, 2017, 2, 972.
64 Zhang Y, Zhou Z, Ji F, et al. Advanced Materials, 2018, 30, 1707143.
65 Li M, Chao Y H, Kang T, et al. Journal of Materials Chemistry A, 2016, 4, 15088.
66 Wang Y, Rho W Y, Yang H Y, et al. Nano Energy, 2016, 27, 535.
67 Grancini G, Roldán-Carmona C, Zimmermann I, et al. Nature Communications, 2017, 8, 15684.
68 Lin Y, Bai Y, Fang Y, et al. The Journal of Physical Chemistry Letters, 2018, 9, 654.
69 Jang Y W, Lee S, Yeom K M, et al. Nature Energy, 2021, 6, 63.
70 Kim H S, Lee J W, Yantara N, et al. Nano Letters, 2013, 13, 2412.
71 Mahmood K, Swain B S, Amassian A. Advanced Energy Materials, 2015, 5, 1500568.
72 Song J, Zheng E, Bian J, et al. Journal of Materials Chemistry A, 2015, 3, 10837.
73 Chen T, Shi T, Li X, et al. Solar RRL, 2018, 2, 1870226.
74 Li D B, Hu L, Xie Y, et al. ACS Photonics, 2016, 3, 2122.
75 Shin S S, Yeom E J, Yang W S, et al. Science, 2017, 356, 167.
76 Jiang Q, Zhao Y, Zhang X, et al. Nature Photonics, 2019, 13, 460.
77 Choi H, Mai C K, Kim H B, et al. Nature Communications, 2015, 6, 7348.
78 Huang J, Wang K X, Chang J J, et al. Journal of Materials Chemistry A, 2017, 5, 13817.
79 Fan P, Zheng D, Zheng Y, et al. Electrochimica Acta, 2018, 283, 922.
80 Zhou X, Hu M, Liu C, et al. Nano Energy, 2019, 63, 103866.
81 Jeng J Y, Chen K C, Chiang T Y, et al. Advanced Materials, 2014, 26, 4107.
82 Arora N, Dar M I, Hinderhofer A, et al. Science, 2017, 358, 768.
83 Duan C, Zhao M, Zhao C, et al. Materials Today Energy, 2018, 9, 487.
84 Han D, Wu C, Zhang Q, et al. ACS Applied Materials & Interfaces, 2018, 10, 31535.
85 Kim G W, Kang G, Choi K, et al. Advanced Energy Materials, 2018, 8, 1801386.
86 Guerrero A, You J, Aranda C, et al. ACS Nano, 2016, 10, 218.
87 Zhou J, Hou J, Tao X, et al. Journal of Materials Chemistry A, 2019, 7, 7710.
88 Li Y, Zhao Y, Chen Q, et al. Journal of the American Chemical Society, 2015, 137, 15540.
89 You S, Wang H, Bi S, et al. Advanced Materials, 2018, 30, 1706924.
90 Huang M, Zhao Q, Chen Z, et al. Chemistry Letters, 2019, 48, 700.
91 Li M, Wang Z K, Kang T, et al. Nano Energy, 2018, 43, 47.
92 Ke W, Zhao D, Grice C R, et al. Journal of Materials Chemistry A, 2015, 3, 17971.
93 Xu X, Liu Z, Zuo Z, et al. Nano Letters, 2015, 15, 2402.
94 Lee Y, Paek S, Cho K T, et al. Journal of Materials Chemistry A, 2017, 5, 12729.
95 Peng J, Walter D, Ren Y, et al. Science, 2021, 371, 390.
96 Niu G, Li W, Meng F, et al. Journal of Materials Chemistry A, 2014, 2, 705.
97 Zuo L, Guo H, Dequilettes D W, et al. Science Advances, 2017, 3, 1700106.
98 Hou F, Su Z, Jin F, et al. Nanoscale, 2015, 7, 9427.
99 Wu S, Chen R, Zhang S, et al. Nature Communications, 2019, 10.
100 Qin P L, Yang G, Ren Z W, et al. Advanced Materials, 2018, 30, 1706126.
101 Zhang Y, Chen J, Lian X, et al. Small Methods, 2019, 3, 1900375.
102 Ning S, Zhang S, Sun J, et al. ACS Applied Materials & Interfaces, 2020, 12, 43705.
103 Zhang H, Ren X, Chen X, et al. Energy & Environmental Science, 2018, 11, 2253.
104 Ma D, Li W, Chen X, et al. Small, 2021, 17, 2100678.
105 Bella F, Griffini G, Correa-Baena J P, et al. Science, 2016, 354, 203.
106 Matsui T, Yamamoto T, Nishihara T, et al. Advanced Materials, 2019, 31, 1806823.
107 Ma S, Bai Y, Wang H, et al. Advanced Energy Materials, 2020, 10, 1902472.
108 Shi A, Bucknall M, Young T, et al. Science, 2020, 368, 2412.
109 Ono L K, Raga S R, Remeika M, et al. Journal of Materials Chemistry A, 2015, 3, 15451.
110 Heo J H, Choi Y K, Koh C W, et al. Advanced Materials Technologies, 2019, 4, 1800390.
111 Domanski K, Alharbi E A, Hagfeldt A, et al. Nature Energy, 2018, 3, 61.
112 Jordan D C, Kurtz S R. Progress in Photovoltaics: Research and Applications, 2013, 21, 12.
113 Extance A. Nature, 2019, 570, 429.
114 Christians J, Habisreutinger S, Berry J, et al. ACS Energy Letters, 2018, 3, 2136.
115 Deng Y, Zheng X, Bai Y, et al. Nature Energy, 2018, 3, 560.
116 Di Giacomo F, Shanmugam S, Fledderus H, et al. Solar Energy Materials and Solar Cells, 2018, 181, 53.
117 Howard I A, Abzieher T, Hossain I M, et al. Advanced Materials, 2019, 31, 1806702.
118 Qiu L, He S, Jiang Y, et al. Journal of Materials Chemistry A, 2019, 7, 6920.
119 Chen H, Ye F, Tang W, et al. Nature, 2017, 550, 92.
[1] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[2] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[3] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[4] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[5] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[6] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[7] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[8] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[9] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[10] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[11] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[12] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[13] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[14] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[15] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed