Research Progress on Stability of Perovskite Solar Cells and Industrialization Trend of Modules
JIN Shengli1,2, SHOU Chunhui1,2,*, HUANG Mianji1,2, HE Haiyan1,2, LI Cong3
1 Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province,Hangzhou 311121,China 2 Zhejiang Energy R & D Institute Co., Ltd.,Hangzhou 311121,China 3 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
Abstract: Organic-inorganic hybrid perovskite materials have been widely used in the area of photovoltaic, display devices and sensors because of their excellent photoelectric properties. In recent years, the key technology of perovskite solar cells (PSCs) has developed rapidly, and there are many breakthroughs that have been made in photoelectric conversion efficiency and devices area. However, the stability of perovskite mate-rials and devices has not been fundamentally solved, which seriously restricts the practical performance and commercialization of perovskite photovoltaic devices. The instability of PSCs derived from the perovskite active layer, the charge transport materials and the electrode materials. The causes mainly include environmental factors such as light, water, temperature and oxygen. Therefore, it is crucial to understand the mechanism of each factor on the stability of PSCs. In addition, compared with crystalline silicon solar cells and other thin-film solar cells, PSCs have great differences in material properties and device structures. At present, the stability evaluation methods and testing methods of crystalline silicon cells and other thin film cells are not fully applicable to PSCs. A standard stability tests procedure is required in order to compare the stability test results of perovskite cells between the various institutions. In this paper, the factors affecting the stability of perovskite materials and photovoltaic devices are firstly summarized. Then the mechanism of environmental factors such as light, moisture, temperature and oxygen on the stability of perovskite devices are analyzed, and the methods to improve the stability of PSCs are summarized. Finally, the stability evaluation and testing methods, as well as the future development direction of PSCs are analyzed and forecasted, which provide a new idea for the commercial application of PSCs.
金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
JIN Shengli, SHOU Chunhui, HUANG Mianji, HE Haiyan, LI Cong. Research Progress on Stability of Perovskite Solar Cells and Industrialization Trend of Modules. Materials Reports, 2023, 37(5): 21030201-13.
1 Chapin D M, Fuller C S, Pearson G L. Journal of Applied Physics, 1954, 25, 676. 2 Heo J H, Im S H, Noh J H, et al. Nature Photonics, 2013, 7, 486. 3 Laban W A, Etgar L. Energy & Environmental Science, 2013, 6, 3249. 4 Stranks S D, Burlakov V M, Leijtens T, et al. Physical Review Applied, 2014, 2, 034007. 5 Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry, 2013, 52, 9019. 6 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131, 6050. 7 Yang W S, Noh J H, Jeon N J, et al. Science, 2015, 348, 1234. 8 Rong Y, Hu Y, Mei A, et al. Science, 2018, 361, 8235. 9 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10, 391. 10 Chen S, Wen X, Huang S, et al. Solar RRL, 2017, 1, 1600001. 11 Frost J M, Butler K T, Brivio F, et al. Nano Letters, 2014, 14, 2584. 12 Yang J, Siempelkamp B D, Liu D, et al. ACS Nano, 2015, 9, 1955. 13 Bryant D, Aristidou N, Pont S, et al. Energy & Environmental Science, 2016, 9, 1655. 14 Conings B, Drijkoningen J, Gauquelin N, et al. Advanced Energy Materials, 2015, 5, 1500477. 15 Yang X, Yan X, Wang W, et al. Organic Electronics, 2016, 34, 79. 16 Eperon G E, Habisreutinger S N, Leijtens T, et al. ACS Nano, 2015, 9, 9380. 17 Wang Z, Shi Z, Li T, et al. Angewandte Chemie International Edition, 2017, 56, 1190. 18 Zhang H Y. Study on fabrication and stablity of high performance perovskite solar cells. Ph. D. Thesis, Institute of Physics Chinese Aca-demy of Science, China, 2018 (in Chinese). 张慧银. 高效钙钛矿太阳能电池的制备与稳定性研究, 博士学位论文, 中国科学院物理研究所, 2018. 19 Swainson I P, Tucker M G, Wilson D J, et al. Chemistry of Materials, 2007, 19, 2401. 20 Binek A, Hanusch F C, Docampo P, et al. The Journal of Physical Chemistry Letters, 2015, 6, 1249. 21 Lou H R, Ye Z Z, He H P. Acta Physica Sinica, 2019, 68(15), 157102 (in Chinese). 楼浩然, 叶志镇, 何海平. 物理学报, 2019, 68(15),157102. 22 Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, et al. Angewandte Chemie International Edition, 2015, 54, 8208. 23 Gottesman R, Gouda L, Kalanoor B S, et al. The Journal of Physical Chemistry Letters, 2015, 6, 2332. 24 Domanski K, Roose B, Matsui T, et al. Energy & Environmental Science, 2017, 10, 604. 25 Nie W, Blancon J C, Neukirch A J, et al. Nature Communications, 2016, 7, 11574. 26 Hoke E T, Slotcavage D J, Dohner E R, et al. Chemical Science, 2015, 6, 613. 27 Bischak C G, Hetherington C L, Wu H, et al. Nano Letters, 2017, 17, 1028. 28 Wei T C, Wang H P, Li T Y, et al. Advanced Materials, 2017, 29, 1701789. 29 Kirschner M S, Diroll B T, Guo P, et al. Nature Communications, 2019, 10, 504. 30 Mosconi E, Meggiolaro D, Snaith H J, et al. Energy & Environmental Science, 2016, 9, 3180. 31 Tian Y, Merdasa A, Unger E, et al. The Journal of Physical Chemistry Letters, 2015, 6, 4171. 32 Tian Y, Peter M, Unger E, et al. Physical Chemistry Chemical Physics, 2015, 17, 24978. 33 Leijtens T, Eperon G E, Pathak S, et al. Nature Communications, 2013, 4, 2885. 34 Yang J, Siempelkamp B D, Mosconi E, et al. Chemistry of Materials, 2015, 27, 4229. 35 Zhang T, Meng X, Bai Y, et al. Journal of Materials Chemistry A, 2017, 5, 1103. 36 Domanski K, Correa-Baena J P, Mine N, et al. ACS Nano, 2016, 10, 6306. 37 Kato Y, Ono L K, Lee M V, et al. Advanced Materials Interfaces, 2015, 2, 1500195. 38 Bi E, Chen H, Xie F, et al. Nature Communications, 2017, 8, 15330. 39 Liu L, Huang S, Lu Y, et al. Advanced Materials, 2018, 30, 1800544. 40 Van Reenen S, Kemerink M, Snaith H J. The Journal of Physical Che-mistry Letters, 2015, 6, 3808. 41 Shao Y, Fang Y, Li T, et al. Energy & Environmental Science, 2016, 9, 1752. 42 Meggiolaro D, Motti S G, Mosconi E, et al. Energy & Environmental Science, 2018, 11, 702. 43 Xie F, Chen C C, Wu Y, et al. Energy & Environmental Science, 2017, 10, 1942. 44 Park C, Ko H, Sin D H, et al. Advanced Functional Materials, 2017, 27, 1703546. 45 Saliba M, Matsui T, Seo J Y, et al. Energy & Environmental Science, 2016, 9, 1989. 46 Li X, Ibrahim Dar M, Yi C, et al. Nature Chemistry, 2015, 7, 703. 47 Zhao Y, Wei J, Li H, et al. Nature Communications, 2016, 7, 10228. 48 Bi D, Gao P, Scopelliti R, et al. Advanced Materials, 2016, 28, 2910. 49 Wu C, Li H, Yan Y, et al. Solar RRL, 2018, 2, 1800052. 50 Wang Y, Mahmoudi T, Rho W Y, et al. Nano Energy, 2017, 40, 408. 51 Chung C C, Narra S, Jokar E, et al. Journal of Materials Chemistry A, 2017, 5, 13957. 52 Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Advanced Energy Materials, 2018, 8, 1702719. 53 Jin J, Li H, Chen C, et al. ACS Applied Materials & Interfaces, 2017, 9, 42875. 54 Bi C, Zheng X, Chen B, et al. ACS Energy Letters, 2017, 2, 1400. 55 Boopathi K M, Mohan R, Huang T Y, et al. Journal of Materials Che-mistry A, 2016, 4, 1591. 56 Zimmermann I, Gratia P, Martineau D, et al. Journal of Materials Che-mistry A, 2019, 7, 8073. 57 Mei A, Li X, Liu L, et al. Science, 2014, 345, 295. 58 Zhou Y, Wang F, Cao Y, et al. Advanced Energy Materials, 2017, 7, 1701048. 59 Xu Q, Li Z, Liu M, et al. The Journal of Physical Chemistry Letters, 2018, 9, 6948. 60 Wang J, Chen H, Wei S H, et al. Advanced Materials, 2019, 31, 1806593. 61 Noh J H, Im S H, Heo J H, et al. Nano Letters, 2013, 13, 1764. 62 Tai Q, You P, Sang H, et al. Nature Communications, 2016, 7, 11105. 63 Jodlowski A D, Roldán-Carmona C, Grancini G, et al. Nature Energy, 2017, 2, 972. 64 Zhang Y, Zhou Z, Ji F, et al. Advanced Materials, 2018, 30, 1707143. 65 Li M, Chao Y H, Kang T, et al. Journal of Materials Chemistry A, 2016, 4, 15088. 66 Wang Y, Rho W Y, Yang H Y, et al. Nano Energy, 2016, 27, 535. 67 Grancini G, Roldán-Carmona C, Zimmermann I, et al. Nature Communications, 2017, 8, 15684. 68 Lin Y, Bai Y, Fang Y, et al. The Journal of Physical Chemistry Letters, 2018, 9, 654. 69 Jang Y W, Lee S, Yeom K M, et al. Nature Energy, 2021, 6, 63. 70 Kim H S, Lee J W, Yantara N, et al. Nano Letters, 2013, 13, 2412. 71 Mahmood K, Swain B S, Amassian A. Advanced Energy Materials, 2015, 5, 1500568. 72 Song J, Zheng E, Bian J, et al. Journal of Materials Chemistry A, 2015, 3, 10837. 73 Chen T, Shi T, Li X, et al. Solar RRL, 2018, 2, 1870226. 74 Li D B, Hu L, Xie Y, et al. ACS Photonics, 2016, 3, 2122. 75 Shin S S, Yeom E J, Yang W S, et al. Science, 2017, 356, 167. 76 Jiang Q, Zhao Y, Zhang X, et al. Nature Photonics, 2019, 13, 460. 77 Choi H, Mai C K, Kim H B, et al. Nature Communications, 2015, 6, 7348. 78 Huang J, Wang K X, Chang J J, et al. Journal of Materials Chemistry A, 2017, 5, 13817. 79 Fan P, Zheng D, Zheng Y, et al. Electrochimica Acta, 2018, 283, 922. 80 Zhou X, Hu M, Liu C, et al. Nano Energy, 2019, 63, 103866. 81 Jeng J Y, Chen K C, Chiang T Y, et al. Advanced Materials, 2014, 26, 4107. 82 Arora N, Dar M I, Hinderhofer A, et al. Science, 2017, 358, 768. 83 Duan C, Zhao M, Zhao C, et al. Materials Today Energy, 2018, 9, 487. 84 Han D, Wu C, Zhang Q, et al. ACS Applied Materials & Interfaces, 2018, 10, 31535. 85 Kim G W, Kang G, Choi K, et al. Advanced Energy Materials, 2018, 8, 1801386. 86 Guerrero A, You J, Aranda C, et al. ACS Nano, 2016, 10, 218. 87 Zhou J, Hou J, Tao X, et al. Journal of Materials Chemistry A, 2019, 7, 7710. 88 Li Y, Zhao Y, Chen Q, et al. Journal of the American Chemical Society, 2015, 137, 15540. 89 You S, Wang H, Bi S, et al. Advanced Materials, 2018, 30, 1706924. 90 Huang M, Zhao Q, Chen Z, et al. Chemistry Letters, 2019, 48, 700. 91 Li M, Wang Z K, Kang T, et al. Nano Energy, 2018, 43, 47. 92 Ke W, Zhao D, Grice C R, et al. Journal of Materials Chemistry A, 2015, 3, 17971. 93 Xu X, Liu Z, Zuo Z, et al. Nano Letters, 2015, 15, 2402. 94 Lee Y, Paek S, Cho K T, et al. Journal of Materials Chemistry A, 2017, 5, 12729. 95 Peng J, Walter D, Ren Y, et al. Science, 2021, 371, 390. 96 Niu G, Li W, Meng F, et al. Journal of Materials Chemistry A, 2014, 2, 705. 97 Zuo L, Guo H, Dequilettes D W, et al. Science Advances, 2017, 3, 1700106. 98 Hou F, Su Z, Jin F, et al. Nanoscale, 2015, 7, 9427. 99 Wu S, Chen R, Zhang S, et al. Nature Communications, 2019, 10. 100 Qin P L, Yang G, Ren Z W, et al. Advanced Materials, 2018, 30, 1706126. 101 Zhang Y, Chen J, Lian X, et al. Small Methods, 2019, 3, 1900375. 102 Ning S, Zhang S, Sun J, et al. ACS Applied Materials & Interfaces, 2020, 12, 43705. 103 Zhang H, Ren X, Chen X, et al. Energy & Environmental Science, 2018, 11, 2253. 104 Ma D, Li W, Chen X, et al. Small, 2021, 17, 2100678. 105 Bella F, Griffini G, Correa-Baena J P, et al. Science, 2016, 354, 203. 106 Matsui T, Yamamoto T, Nishihara T, et al. Advanced Materials, 2019, 31, 1806823. 107 Ma S, Bai Y, Wang H, et al. Advanced Energy Materials, 2020, 10, 1902472. 108 Shi A, Bucknall M, Young T, et al. Science, 2020, 368, 2412. 109 Ono L K, Raga S R, Remeika M, et al. Journal of Materials Chemistry A, 2015, 3, 15451. 110 Heo J H, Choi Y K, Koh C W, et al. Advanced Materials Technologies, 2019, 4, 1800390. 111 Domanski K, Alharbi E A, Hagfeldt A, et al. Nature Energy, 2018, 3, 61. 112 Jordan D C, Kurtz S R. Progress in Photovoltaics: Research and Applications, 2013, 21, 12. 113 Extance A. Nature, 2019, 570, 429. 114 Christians J, Habisreutinger S, Berry J, et al. ACS Energy Letters, 2018, 3, 2136. 115 Deng Y, Zheng X, Bai Y, et al. Nature Energy, 2018, 3, 560. 116 Di Giacomo F, Shanmugam S, Fledderus H, et al. Solar Energy Materials and Solar Cells, 2018, 181, 53. 117 Howard I A, Abzieher T, Hossain I M, et al. Advanced Materials, 2019, 31, 1806702. 118 Qiu L, He S, Jiang Y, et al. Journal of Materials Chemistry A, 2019, 7, 6920. 119 Chen H, Ye F, Tang W, et al. Nature, 2017, 550, 92.