Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20060037-12    https://doi.org/10.11896/cldb.20060037
  无机非金属及其复合材料 |
SnO2基钙钛矿太阳能电池的发展
高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香
景德镇陶瓷大学材料科学与工程学院,江西 景德镇 333403
Development of SnO2-based Perovskite Solar Cells
GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian, ZHU Hua, WANG Yanxiang
School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China
下载:  全 文 ( PDF ) ( 11134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机无机杂化钙钛矿太阳能电池在2009年首次被报道,经过10多年的发展,钙钛矿电池认证光电转化效率已达25.5%。在电池中电子传输层起到阻挡空穴、传输电子、减少光生电子复合的作用,是钙钛矿太阳能电池的关键部分。与当前电子传输层应用最广泛的TiO2相比,SnO2拥有电子迁移率更高、可与电池其他部分能级匹配等优点。SnO2为宽禁带半导体,不发生光降解,有利于电池的稳定。SnO2作为电子传输层无需高温烧结,制备方法简单。
2015年以SnO2薄膜为电子传输层的电池被首次报道,其光电转换效率达到17.21%。随后,许多课题组也相继报道了基于SnO2电子传输层的高性能钙钛矿太阳能电池。目前,以SnO2为电子传输层的平面钙钛矿电池表现出高达25.2%的光电转换效率。采用SnO2作为电子传输层的主要问题是:当SnO2在高温煅烧时,晶粒会变大,并且体积膨胀会导致薄膜裂纹增多。与钙钛矿相比,SnO2的导带要低得多,这可能会导致钙钛矿太阳能电池的电压降低。
本文针对近几年SnO2基钙钛矿电池的发展进行了系统综述,归纳了SnO2的不同制备方法、掺杂和界面钝化对电子传输层的影响,并对SnO2基钙钛矿电池未来的研究趋势进行了展望,以期为制备稳定高效的钙钛矿太阳能电池作参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高培养
范学运
李家科
郭平春
黄丽群
孙健
朱华
王艳香
关键词:  钙钛矿太阳能电池  电子传输层  氧化锡    
Abstract: Organic-inorganic hybrid perovskite solar cells(PSCs) were first reported in 2009. After ten years of development, the certification efficiency of PSCs has reached 25.5%. The electron transport layers is the key part of the PSCs, which can block the holes and transfer electrons to reduce the recombination. Compared with TiO2, which was the most widely used electron transport layer, SnO2 has the advantages of higher electron mobility,and energy level matching with other parts of the solar cell devices,etc. Furthermore, SnO2 is a semiconductor with large energy gap, and shows little degradation under light, which is beneficial for its stability. Meanwhile, the preparation process for SnO2 based electron layer is simple and needs no high temperature sintering.
In 2015, the device using SnO2 as the electron transport layer was reported for the first time, and the photoelectric conversion efficiency reached 17.21%. Subsequently, many research groups also reported high-performance PSCs based on SnO2 electron transport layer. At present, the planar PSCs with SnO2 as the electron transport layer shows a photoelectric conversion efficiency as high as 25.2%. The main problem for applying SnO2 based electron transport layer is that when SnO2 is calcined at high temperature, the crystal grains will become larger, and generates cracks in the film owing to the expansion of grain. Additional, compared with perovskite, the conduction band of SnO2 is much lower, which may cause the voltage loss of PSCs.
This article systematically reviews the development of SnO2-based perovskite cells in recent years, and summarizes the effects of the preparation methods, the doping of the electron transportation layer and interface passivation on the performance. Furthermore, research trends of SnO2 based PSCs are prospected for hoping to provide a reference for the preparation of high performance PSCs.
Key words:  perovskite solar cells    electron transport layers    SnO2
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(61764007);江西省自然科学基金(20202BAB204022);江西省重点研发计划(20192BBEL50032);江西省教育厅科学技术研究项目(GJJ201315; GJJ201316);景德镇科技计划项目(20182GYDZ011-13;20192GYZD008-36)
通讯作者:  yxwang72@163.com   
作者简介:  高培养,2017年毕业于盐城工学院,获工学学士学位。同年进入景德镇陶瓷大学攻读硕士学位,在王艳香教授的指导下进行研究,目前主要研究方向为有机-无机杂化钙钛矿太阳能电池。
王艳香,教授,博士,欧洲膜技术研究所访问学者,江西省百千万人才,江西省中青年骨干教师,江西省青年科学家培养对象,材料学博士研究生导师。1996年毕业于景德镇陶瓷学院,获工学学士学位;1999年毕业于景德镇陶瓷学院,获工学硕士学位;2004年毕业于中国科学院上海硅酸盐研究所,获工学博士学位。主持并完成国家级科研项目3项,省级科研项目10项。作为骨干参加国家级项目5项、省级和市级科研项目9项;发表论文85篇,其中SCI和EI收录60篇;获中国发明专利20项。长期从事无机非金属材料方面的教学与科研,主要研究方向是纳米光电新能源材料,目前主要研究太阳能电池,包括染料敏化太阳能电池、量子点敏化太阳能电池和有机-无机杂化钙钛矿太阳能电池。
引用本文:    
高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian, ZHU Hua, WANG Yanxiang. Development of SnO2-based Perovskite Solar Cells. Materials Reports, 2022, 36(8): 20060037-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060037  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20060037
1 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society,2009,131(17),6050.
2 Jeong J, Kim M, Seo J, et al. Nature,2021,592(7854),381
3 Burschka J, Pellet N, Moon S, et al. Nature,2013,499,316.
4 Zhou H, Chen Q, Li G, et al. Science,2014,345(6196),542.
5 Sun H, Deng J, Qiu L, et al. Energy & Environmental Science,2015,8,1139.
6 Chueh C, Li C Z, Jen A K Y. Energy & Environmental Science,2015,8,1160.
7 Jiang Q, Zhang X W, You J B. Small,2018,14(31),1801154.
8 Zhao P, Lin Z, Wang J. ACS Applied Energy Materials,2019,2(6),4504.
9 Zhang S, Su J, Lin Z,et al. Advance Materails Interfaces,2019,6,1900400.
10 Xiong L B, Qin M C, Chen C, et al. Advanced Functional Materials,2018,28(10),1706276.
11 Ren X, Yang D, Yang Z, et al. ACS Applied Materials Interfaces,2017,9(3),2421.
12 Xiong L B, Qin M C, Yang G, et al. Journal of Materials Chemistry A,2016,4(21),8374.
13 Jiang Q, Zhang L, Yang X, et al. Nature Energy,2016,2(1),16177.
14 Dagar J, Castro-Hermosa S, Gasbarri M, et al. Nano Research,2018,11(5),2669.
15 Dong Q, Shi Y, Zhang C, et al. Nano Energy,2017,40,336.
16 Park M, Kim J Y, Son H J, et al. Nano Energy,2016,26,208.
17 Wang C L, Zhao D W, Grice C R, et al. Journal of Materials Chemistry A,2016,4(31),12080.
18 Bush K, Palmstrom A, Yu Z, et al. Nature Energy,2017,2,17009.
19 Jiang Q, Zhao Y, Zhang X W, et al. Nature Photonics,2019,13,460.
20 Ke W, Fang G, Liu Q. Journal of the American Chemical Society,2015,137(21),6730.
21 Bai Y, Fang Y, Deng Y, et al. ChemSusChem,2016,9(18),2686.
22 Huang L, Sun X, Li C,et al. ACS Applied Materials Interfaces,2017,9(26),21909.
23 Zhang W, Li Y, Liu X, et al. Chemical Engineering Journal,2020,378,122298
24 Shahriar S, Castaneda V, Martinez M, et al. Journal of Renewable and Sustainable Energy,2019,11,053504.
25 Lee Y, Paek S, Cho K T, et al. Journal of Materials Chemistry A,2017,5,12729.
26 Li F M, Xu M Q, Ma X P, et al. Nanoscale Research Letters,2018,13,216.
27 Xiao Z, Dong Q, Bi C, et al. Advanced Materials,2014,26(37),6503.
28 Bi C, Yuan Y, Fang Y, et al. Advanced Energy Materials,2014,5(6),1401616.
29 Shao Y, Xiao Z, Bi C, et al. Nature Communications.2014,5(1),5784.
30 Pinpithak P, Chen H W, Kulkarni A, et al. Chemistry Letters,2017,46(3),382.
31 Jiang Q, Chu Z N, Wang P Y, et al. Advanced Materials,2017,29,1703852.
32 Dong Q S, Li J W, Shi Y T, et al. Advanced Energy Materials,2019,9,1900834.
33 Jung K H, Seo J Y, Lee S, et al. Journal of Materials Chemistry A,2017,5(47),24790.
34 Liu Z H, Hu J N, Jiao H Y, et al. Advanced Function Materials,2016,26,6069.
35 Chen C, Jiang Y, Guo J, et al. Advanced Function Materials,2019,29(30),1900557.
36 Elam J W, Baker D A, Hryn A J, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,2008,26(2),244.
37 Hoffmann L, Brinkmann K O, Malerczyk J, et al. ACS Applied Materials Interfaces,2018,10(6),6006.
38 Hu T, Becker T, Pourdavoud N, et al. Advanced Materials,2017,29(27),1606656.
39 Baena J P C, Steier L, Tress W, et al. Energy & Environmental Science,2015,8,2928.
40 Kuang Y H, Zardetto V, Gils R, et al. ACS Applied Materials Interfaces,2018,10,30367.
41 Xiao C, Wang C, Ke W, et al. ACS Applied Materials & Interfaces,2017,9(44),38373.
42 Barbe J, Tietze M L, Neophytou M, et al. ACS Applied Materials & Interfaces,2017,9(13),11828.
43 Anaraki E H, Kermanpur A, Steier L, et al. Energy & Environmental Science,2016,9(10),3128.
44 Habisreutinger S N, Wenger B, Snaith H J, et al. ACS Energy Letters,2017,2(3),622.
45 Liu Q, Zhang X, Li C Y, et al. Applied Physics Letters,2019,115,143903.
46 Chen Y, Gu J, Fan R, et al. Chemical Communications.2017,53,11028.
47 Yang G, Lei H W, Tao H, et al. Small,2017,13(2),1601769.
48 Zhou Y, Zhang Z, Cai Y, et al. Electrochimica Acta,2018,260(10),468.
49 Liu Z, Hu J, Jiao H, et al. Advanced Materials,2017,29,1606774.
50 Hu G, Liu Z, Fang Z, et al. Journal of Functional Materials,2005,36(3),335(in Chinese).
胡国荣,刘智敏,方正升,等.功能材料,2005,36(3),335.
51 Jiang X X, Xiong Y L, Zhang Z H, et al. Electrochimica Acta,2018,263,134.
52 Lu Z D. Study of the structure and photocatalytic activity of doping TiO2 thin films deposited by electron beam evaporation. Master's Thesis, Nanjing University of Science & Technology, China,2012.
陆中丹.电子束蒸发沉积掺杂TiO2薄膜的结构控制及其性质研究.硕士学位论文,南京理工大学,2012.
53 Ma J J, Zheng X L, Lei H W, et al. Solar RRL,2017,1(10),1700118.
54 Zhu M H, Liu W W, Ke W J, et al. Journal of Materials Chemistry A,2017,5(46),24110.
55 Chen J Y, Chueh C C, Zhu Z, et al. Solar Energy Materials & Solar Cells,2017,164,47.
56 Liu Q,Zhang X, Li C Y,et al. Applied Physics Letters,2019,115,143903.
57 Mrabet C, Boukhachem A, Amlouk M,et al. Journal of Alloys and Compounds,2016,666(5),392.
58 Godinho K G, Walsh A, Watson G W, et al. Journal of Materials Chemistry A,2018,6,1850.
59 Chen H, Liu D, Wang Y,et al. Nanoscale Research Letters,2017,12(1),238.
60 Song J, Zhang W, Wang D, et al. Solar Energy,2019,185,508.
61 Anaraki E H, Kermanpur A, Mayer M T, et al. ACS Energy Letters,2018,3(4),773.
62 Noh Y W, Lee J H, Jin I S, et al. Nano Energy,2019,65,104014.
63 Tu B, Shao Y F, Chen W, et al. Advanced Materials,2019,31(15),1805944.
64 Huang X, Du J, Guo X, et al. Solar RRL,2020,4,1900336.
65 Zuo L, Chen Q, Marco D N, et al. Nano Letters,2017,17(1),269.
66 Zuo L, Guo H, DeQuilettes D W, et al. Science Advances,2017,3(8),e1700106.
67 Yang Z, Zhong M, Liang Y, et al. Advanced Function Materials,2019,29(42),1903621.
68 Chen J, Zhao X, Kim S, et al. Advanced Meterials,2019,31(39),1902902.
69 Roose B, Friend R H. Advanced Materials Interfaces,2019,6(5),1801788.
70 Zuo L, Gu Z, Ye T, et al. Journal of the American Chemical Society,2015,137(7),2674.
71 Cao T T, Chen K, Chen Q Y, et al. ACS Applied Materials Interfaces,2019,11(37).33825.
72 Wang P, Wang J, Zhang X, et al. Journal of Materials Chemistry A,2018,6,15853.
73 Du J, Feng L, Guo X,et al. Journal of Power Sources,2020,455,227974.
74 Zhou L, Su J, Lin Z, et al. Solar RRL,2020,4,2000001.
[1] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[2] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[3] 马殿普, 普友福, 陈高芳, 覃德清, 张家涛. 二氧化锡超细粉体制备方法综述[J]. 材料导报, 2021, 35(Z1): 151-155.
[4] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[5] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[6] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[7] 刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
[8] 茹鹏斌, 毕恩兵, 陈汉. 无机电荷传输层界面修饰制备稳定钙钛矿太阳能电池[J]. 材料导报, 2020, 34(18): 18003-18008.
[9] 于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
[10] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[11] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[12] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[13] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[14] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[15] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed