Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080229-6    https://doi.org/10.11896/cldb.20080229
  无机非金属及其复合材料 |
第一性原理在钙钛矿中的应用研究进展
曾奕瑾, 宗朔通
太原科技大学材料科学与工程学院,太原 030024
Research Progress in the Application of First-principles in Perovskite
ZENG Yijin, ZONG Shuotong
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 4191KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来钙钛矿材料成为太阳能电池领域的新星,其具有光电转化效率优异、光吸收能力强、量子效率高、载流子迁移率高以及发射波长可进行调节等优点,非常适合作为激光增益介质,可用于钙钛矿发光二极管、光电探测器、燃料电池等。近年来,第一性原理应用于钙钛矿的研究取得了许多成果。然而,钙钛矿材料也有缺陷,比如用于构建钙钛矿的元素大多为铅、砷、镓、碲、镉等有害金属元素。虽然目前已经有人试图用锡代替铅作为太阳能电池,但是效率仅为6%。如何用无害的元素构建钙钛矿,并提高其效率,是一个重大难题,因此研究者们通过掺杂、空位处理等方式对各类型的钙钛矿进行改良,以增加效率、提高品质等。研究人员还发现无空穴传输材料钙钛矿太阳能电池结构简单,制备步骤更加简化,性价比更高,是新型钙钛矿太阳能电池研究的重要方向。本文综述了近年来第一性原理在各类型钙钛矿材料研究方面的应用,主要包括各类型钙钛矿的结构与性质的计算研究,分析和总结了较前沿的研究方法和研究成果,详细介绍了各研究者对不同类型的钙钛矿进行的掺杂处理(可改良其性能),分析了改良过程,讨论了取得的新型成果并总结了研究特点,以期为今后的钙钛矿分析提供多种思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾奕瑾
宗朔通
关键词:  钙钛矿  第一性原理  太阳能电池  光电特性    
Abstract: In recent years, perovskite materials have become a new star in the solar cells field, due to its excellent photoelectric conversion efficiency, high absorption capacity, high quantum efficiency, high carrier mobility and adjustable emission wavelength. They are very suitable as a laser gain medium for light-emitting diodes, photodetector, fuel cells, etc. Recently, many achievements have been made in the research of the first-principles applied to perovskite. However, perovskite materials also have drawbacks. For example, most of the perovskites contain harmful metals such as lead, arsenic, gallium, tellurium, cadmium and others. Although it has been tried to replace lead with tin, but the efficiency is only 6%. It is a major problem that how to build perovskites from harmless elements and improve their efficiency. Therefore, researchers have improved various types of perovskites by doping, vacancy processing methods and so on to increase the efficiency and improve quality. It has been found that perovskite solar cells without hole-transporting materials have a simpler structure, more simplified preparation process, higher cost-efficiency, and are an important research direction for new perovskite solar cells.In this paper, the application of first-principles in the research of various types of perovskite materials in recent years is reviewed, mainly including the computational studies on the structures and properties of perovskites. The cutting-edge research methods and research results are analyzed and summarized, and the doping treatment of different types of doped perovskite by various researchers is introduced in detail, which can improve their properties. The improvement process is analyzed, and the new achievements are discussed. The characteristics of the study are summarized to provide various ideas for the research and analysis of perovskite in the future.
Key words:  perovskite    first-principles    solar cell    photoelectric property
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  O469  
基金资助: 山西省高等学校科技创新项目(2019L0659);太原科技大学博士科研启动金(20182036);来晋优秀博士科研资助经费(20192010)
通讯作者:  zongshuotong@tyust.edu.cn   
作者简介:  曾奕瑾,现于太原科技大学材料科学与工程学院就读学士学位。目前研究方向为金属材料、钙钛矿材料。
宗朔通,2013年9月至2018年6月,在北京科技大学硕博连读;2018年7月至今,在太原科技大学任讲师。主要研究方向为磁相变、磁致冷、第一性原理计算,发表SCI论文6篇,授权专利8项。
引用本文:    
曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
ZENG Yijin, ZONG Shuotong. Research Progress in the Application of First-principles in Perovskite. Materials Reports, 2022, 36(8): 20080229-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080229  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080229
1 Tanaka H, Misono M. Current Opinion in Solid State and Materials Science,2001,5(5),381.
2 Lu Y C, Li Y X, Chen D M, et al. Journal of the European Ceramic Society,2020,40(8),3049.
3 Yuan H D, Zhou L, Su J, et al. Chinese Optics,2019,12(5),1048(in Chinese).
袁海东,周龙,苏杰,等.中国光学,2019,12(5),1048.
4 Yin W J, Shi T T, Yan Y F, Applied Physics Letters,2014,104(6),063903.
5 Atsushi S, Yasutaka M, Takeo O. Journal of Materials Science,2020,55(3),9728.
6 Börgers J M, De Souza R A. Physical Chemistry Chemical Physics,2020,22(25),1432.
7 Teng Q. First-principles study of electronic and defect properties of halide perovskites. Ph.D. Thesis, South China University of Technology, China,2019(in Chinese).
滕强.卤化物钙钛矿材料电子和缺陷性质的第一性原理研究.博士学位论文,华南理工大学,2019.
8 Liang Y T. First-principles study of inorganic and nontoxic perovskite materials for solar cell application. Ph.D. Thesis,Zhengzhou University,China, 2019(in Chinese).
梁芸亭.几种太阳能电池应用的无机无毒钙钛矿材料的第一性原理研究.博士学位论文,郑州大学,2019.
9 Yakout S M. Journal of Solid State Chemistry,2020,290,121517.
10 Jin J H, Hu Q C, Wang S J, et al. Journal of Jiaxing University,2019,31(6),18(in Chinese)
金家浩,胡奇超,王绅杰,等.嘉兴学院学报,2019,31(6),18.
11 Kasamatsu S, Sugino O, Ogawa T, et al. Journal of Materials Chemistry A,2020,8(25),12674.
12 Liu X, Han F, Shen Q Q, et al. Precious Metals,2019,40(2),32(in Chinese).
刘欣,韩非,申倩倩,等.贵金属,2019,40(2),32.
13 Zhou H S. Spectroscopic/optoelectronic properties and applications of impurity-doped all-inorganic perovskite quantum dots. Ph.D. Thesis, University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), China,2019(in Chinese).
邹胜晗.掺杂全无机钙钛矿量子点光学/光电性能及其应用研究.博士学位论文,中国科学院大学(中国科学院上海硅酸盐研究所),2019.
14 Wang X T, Fu Y H, Na G R, et al. Acta Physica Sinica,2019,68(15),27(in Chinese).
王雪婷,付钰豪,那广仁,等.物理学报,2019,68(15),27.
15 Li Z Z. Research on luminescence properties of rare earth ions doped SrZrO3 and Y3Al2Ga3O12 phosphors. Ph.D. Thesis, Guangdong University of Technology, China,2019(in Chinese).
李振彰.稀土离子掺杂SrZrO3和Y3Al2Ga3O12的发光特性研究.博士学位论文,广东工业大学,2019.
16 Lu D D, Wang J L, Tie S N, et al. Chinese Journal of Luminescence,2020,41(5),557(in Chinese).
卢辉东,王金龙,铁生年,等.发光学报,2020,41(5),557.
17 Takatsu H, Yamashina N, Ochi M, et al. Journal of the Physical Society of Japan,2020,89(7),074801.
18 Ji D H, Zhang Y, Wang S L, et al. Journal of Hebei University(Natural Science Edition),2017,37(6),595(in Chinese).
纪登辉,张娅,王淑玲,等.河北大学学报(自然科学版),2017,37(6),595.
19 Liu S C, First-principles study of double perovskite ferroelectric photovoltaic materials Zn2FeTaO6 and Sc2FeCrO6. Ph.D. Thesis, Soochow University, China,2016(in Chinese).
刘仕晨.双钙钛矿型铁电光伏材料Zn2FeTaO6和Sc2FeCrO6的第一性原理研究.博士学位论文,苏州大学,2016.
20 Lin C D, Zhang Y C, Zhao Y Y, et al. Journal of Synthetic Crystals,2020,49(4),659(in Chinese).
林春丹,张艳超,赵玉莹,等.人工晶体学报,2020,49(4),659.
21 Yang X, Zhang J M. Journal of Shaanxi Normal University (Natural Science Edition),2014,42(2),23(in Chinese).
杨娴,张建民.陕西师范大学学报(自然科学版),2014,42(2),23.
22 Lu X Q, Zhao Z G, Li K, et al. Acta Physico-Chimica Sinica,2016,32(6),1439(in Chinese).
鲁效庆,赵兹罡,李可,等.物理化学学报,2016,32(6),1439.
23 Bi F Z, Zheng X, Ren Z X. Acta Physico-Chimica Sinica,2019,35(1),69(in Chinese)
毕富珍,郑晓,任志勇.物理化学学报,2019,35(1),69.
24 Xia Y F, Chen Y X, Luo T, et al. RSC Advances,2020,14,26407.
25 Rajeswarapalanichamy R, Amudhavalli A, Padmavathy R, et al. Mate-rials Science and Engineering B,2020,258,114560.
26 Cai J W, Lin Z H, Chen Y, et al. Chemical Research,2019,30(6),624(in Chinese).
蔡俊伟,林忠海,陈一,等.化学研究,2019,30(6),624.
27 Li D, Li D, Zhang H, et al. The Journal of Physical Chemistry Letters,2020,11(13),5282.
28 Chen Y X, Zhang L, Miao J H, et al. Dyes and Pigments,2020,181,108608.
29 Cao Y. Pressure-induced structural evolution and optoelectric properties of typical inorganic lead halide perovskite nanocrystal. Master's Thesis, Jilin University, China,2019.
曹晔.高压下典型无机铅卤钙钛矿纳米材料的结构演化与光学特性研究.硕士学位论文,吉林大学,2019.
30 Xiang J M. Simulation calculation on the structure and photoelectric pro-perties of organic-inorganic layered perovskite. Master's Thesis, North China Electric Power University, China,2019.
向金茅.有机-无机层状钙钛矿的结构及光电性能的模拟计算.硕士学位论文,华北电力大学,2019.
31 Wang D, Liang P, Dong Y F, et al. Journal of Physics and Chemistry of Solids,2020,144,109510.
32 Guo L L, Zhai X X, Sun Z. Journal of Wuhan University of Technology,2013,35(9),16(in Chinese)
郭丽玲,翟晓雪,孙璋,等.武汉理工大学学报,2013,35(9),16.
33 Zhu J X, Zhang W Q, Li Y F, et al. Applied Catalysis B: Environmental,2020,268,118389.
[1] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[2] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[3] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[4] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[5] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[6] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[7] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[8] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[9] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[10] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[11] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[12] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[13] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[14] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[15] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed