Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080062-6    https://doi.org/10.11896/cldb.20080062
  无机非金属及其复合材料 |
电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上
肖美霞1, 冷浩1, 姚婷珍1, 王磊1, 何成2
1 西安石油大学材料科学与工程学院,西安 710065
2 西安交通大学金属材料强度国家重点实验室,西安 710049
First-principles of Tunable Band Gaps of van der Waals Heterostructures Under Electric Field: Monolayer SiC on Hydrogenated BN Nanosheets
XIAO Meixia1, LENG Hao1, YAO Tingzhen1, WANG Lei1, HE Cheng2
1 School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 5603KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅(SiC)作为第三代半导体材料的典型代表,是目前应用最理想的宽禁带半导体材料之一,在半导体照明、电子设备等领域具有广阔的应用前景。本工作通过基于密度泛函理论并考虑原子间范德华力相互作用的第一性原理,系统地研究了SiC沉积在表面完全氢化的BN衬底上形成的SiC/HBNH异质薄膜的原子结构和电学性质,并探索电场对其能隙的调控效果。研究结果表明,Si和C原子相对HBNH薄膜的位置将决定其结构稳定性及异质薄膜间相互作用的强弱程度,因此堆垛类型可有效调节SiC/HBNH异质薄膜的能隙,并且异质薄膜的导带底和价带顶分别由SiC、HBNH纳米薄膜来决定,可实现电子和空穴输运轨道的分离。当施加外电场时,SiC/HBNH异质薄膜能隙伴随电场强度的增加呈现出近似线性下降分布,会由直接能隙转变为间接能隙,甚至转变为导体,这主要是由电场增强异质薄膜间的相互作用引起的。该研究结果证实了堆垛类型和电场可有效调节SiC/HBNH异质薄膜的电学性质,降低电子和空穴的结合概率,为其应用于新型电子纳米器件提供重要的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖美霞
冷浩
姚婷珍
王磊
何成
关键词:  碳化硅异质薄膜  第一性原理  范德华力相互作用  电场  电学性质    
Abstract: As a typical representative of the third generation semiconductor materials, silicon carbide (SiC) is one of the most ideally wide band gap semiconductor materials, which has a wide application prospect in semiconductor lighting device and electronic equipment. In this work, we have systematically investigated structural and electronic properties of monolayer SiC on fully-hydrogenated BN nanosheets (SiC/HBNH) and studied the effects of electric field on the band gaps of SiC/HBNH heterobilayers using first-principles calculations based on the density functional theory with van der Waals corrections. The results show that the position of Si and C atoms relative to HBNH nanosheet can determine the structural stability and the interaction strength between SiC and HBNH nanosheets. Therefore, the stacking types can effectively regulate the energy gaps of SiC/HBNH heterobilayers. Moreover, the conduction band minimum and valence band maximum of the heterobilayers are determined by SiC and HBNH nanosheets, respectively, leading to the separation of electrons and holes. Applying an electric field, a linear distribution of band gaps is a function of the strength of electric field, accompanied with a transition from direct semiconductors to indirect semiconductors even to conductors, which are primarily induced the stronger interaction between SiC and HBNH nanosheets. The results demonstrate that the stacking arrangements and electric field can effectively tune the electronic properties of SiC/HBNH heterobilayers, and reduce the recombination probability of electrons and holes, which open a way for the diverse and tunable electronic properties of semiconductor heterostructures in novel electronic nanodevices.
Key words:  SiC heterostructures    first-principles    van der Waals interaction    electric field    electronic property
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  O472  
  O738  
基金资助: 国家自然科学基金青年基金(51801155);西安石油大学《材料科学与工程》省级优势学科(ys37020203)
通讯作者:  mxxiao@xsyu.edu.cn   
作者简介:  肖美霞,西安石油大学副教授。2011年12月毕业于吉林大学并获得材料学博士学位。2012年3月进入西安石油大学材料科学与工程学院工作至今,主要从事半导体纳米材料及金属纳米材料的设计与模拟计算的研究。在国内外重要期刊发表文章20多篇。
引用本文:    
肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
XIAO Meixia, LENG Hao, YAO Tingzhen, WANG Lei, HE Cheng. First-principles of Tunable Band Gaps of van der Waals Heterostructures Under Electric Field: Monolayer SiC on Hydrogenated BN Nanosheets. Materials Reports, 2022, 36(8): 20080062-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080062  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080062
1 Zhou J, Wang Q, Sun Q, et al. Nano Letters,2009,9,3867.
2 Ao Z M, Peeters F M. The Journal of Physical Chemistry C,2010,114,14503.
3 Nair R R, Ren W, Jalil R, et al. Small,2010,6,2877.
4 Zhu Y F, Dai Q Q, Zhao M, et al. Scientific Reports,2013,3,1524.
5 Gao W, Tkatchenko A. Physical Review Letters,2015,114,096101.
6 Ma Y D, Dai Y, Guo M, et al. Nanoscale,2011,3,2301.
7 Zheng H, Li X B, Chen N K, et al. Physical Review B,2015,92,115307.
8 Gao N, Zheng W T, Jiang Q. Physical Chemistry Chemical Physics,2012,14,257.
9 Xu B, Yin J, Xia Y D, et al. Applied Physics Letters,2010,96,143111.
10 Zhou J, Wang Q, Sun Q, et al. Physical Review B,2010,81,085442.
11 Xiao M X, Yao T Z, Ao Z M, et al. Physical Chemistry Chemical Phy-sics,2015,17,8692.
12 Tang Q, Li Y F, Zhou Z, et al. ACS Applied Materials & Interfaces,2010,2,2442.
13 Şahin H, Cahangirov S, Topsakal M, et al. Physical Review B,2009,80,155453.
14 Bekaroglu E, Topsakal M, Cahangirov S, et al. Physical Review B,2010,81,075433.
15 Lin S S. The Journal of Physical Chemistry C,2012,116,3951.
16 Zhang P, Hou X, He Y, et al. Chemical Physics Letters,2015,628,60.
17 Geim A K, Grigorieva I V. Nature,2013,499,419.
18 He C, Zhang X, Liu Z, et al. Acta Physica Sinica,2015,64(20),206102(in Chinese).
何超,张旭,刘智,等.物理学报,2015,64(20),206102.
19 Katsnelson M I, Novoselov K S, Geim A K. Nature Physics,2006,2,620.
20 Chen X F, Lian J S, Jiang Q. Physical Review B,2012,86,125437.
21 Wang T H, Zhu Y F, Jiang Q. The Journal of Physical Chemistry C,2013,117,12873.
22 Liu H, Gao J, Zhao J. The Journal of Physical Chemistry C,2013,117,10353.
23 Li S, Wu Y F, Liu W, et al. Chemical Physics Letters,2014,609,161.
24 Gao N, Li J C, Jiang Q. Physical Chemistry Chemical Physics,2014,16,11673.
25 Ding Y, Wang Y. Applied Physics Letters,2013,103,043114.
26 He C, Zhang W X, Li T, et al. Physical Chemistry Chemical Physics,2015,17,23207.
27 Delley B. Journal of Chemical Physics,1990,92,508.
28 Delley B. Journal of Chemical Physics,2000,113,7756.
29 Grimme S. Journal of Computational Chemistry,2006,27,1787.
30 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters,1996,77,3865.
31 Koelling D D, Hartreermon B N. Journal of Physics C: Solid State Phy-sics,1977,10,3107.
32 Monkhorst H J, Pack J D. Physical Review B,1976,13,5188.
33 Xie X, Ao Z, Su D, et al. Advanced Functional Materials,2015,25,1393.
34 Chen Q L, Dai Z H, Liu Z Q, et al. Acta Physica Sinica,2016,65(13),136101(in Chinese).
陈庆玲,戴振宏,刘兆庆,等.物理学报,2016,65(13),136101.
35 Gao N, Lu G Y, Wen Z, et al. Journal of Materials Chemistry C,2017,5,627.
36 Shen T, Ren J C, Liu X, et al. Journal of the American Chemical Society,2019,141,3110.
37 He C, Han F S, Zhang J H, et al. Journal of Materials Chemistry C,2020,8,6923.
38 Rubio-Pereda P, Takeuchi N. Journal of Physical Chemistry C,2015,119,27995.
39 Su G, Yang S, Jiang Y, et al. Progress in Surface Science,2019,94,100561.
40 Gao W, Chen Y, Li B, et al. Nature Communications,2020,11,1196.
41 Jiang Z Y, Xu X H, Wu H S, et al. Acta Physica Sinica,2002,51(7),1586(in Chinese).
姜振益,许小红,武海顺,等.物理学报,2002,51(7),1586.
42 Kukushkin S, Osipov A, Bessolov V, et al. Reviews on Advanced Mate-rials Science,2008,17,1.
43 Rivera P, Seyler K L, Yu H, et al. Science,2016,351,688.
44 Wu Z, Neaton J B, Grossman J C. Nano Letters,2009,9,2418.
45 Wu W, Ao Z, Wang T, et al. Physical Chemistry Chemical Physics,2014,16,16588.
46 Wang Z, Zhang Y, Wei X, et al. Physical Chemistry Chemical Physics,2020,22(17),9647.
47 Xiao J, Long M, Li X, et al. Journal of Physics: Condensed Matter,2014,26,405302.
[1] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[2] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[3] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[4] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[5] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[6] 解忧, 曹松, 吴秀, 于冰艺, 王素芳. 双层石墨烯掺杂Pd对CO和NO的气敏特性研究[J]. 材料导报, 2021, 35(18): 18035-18039.
[7] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[8] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[9] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[10] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[11] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[12] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[13] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[14] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[15] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed