Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18035-18039    https://doi.org/10.11896/cldb.20060245
  无机非金属及其复合材料 |
双层石墨烯掺杂Pd对CO和NO的气敏特性研究
解忧, 曹松, 吴秀, 于冰艺, 王素芳
西安科技大学理学院,西安 710054
The Adsorption Properties of CO and NO on Pd Doped Bilayer Graphene
XIE You, CAO Song, WU Xiu, YU Bingyi, WANG Sufang
College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 7231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理计算方法,研究了AA堆叠型双层石墨烯掺杂Pd原子(Pd/BG)后对气体分子CO和NO的气敏特性和吸附机理。结果表明,Pd原子的掺杂改变了双层石墨烯的电子性质和局部几何结构。Pd原子替代双层石墨烯的一个碳原子后,杂质原子突出层外区域(Po)和突入层间区域(Pi)都可以形成稳定结构,但是突出(Po)构型更有利于气体分子的吸附。对于Po构型,CO和NO吸附在Pd/BG上的最稳定结构是不同的,CO分子与石墨烯表面呈一定夹角,而NO分子近似垂直于石墨烯表面。Pd/BG对NO分子的吸附强于CO分子。气体分子在Po构型上属于化学吸附,而在Pi构型上属于物理吸附。Pd/BG吸附CO和NO气体分子后具有不同的电子性质。Pd/BG体系为半导体性质,在吸附CO气体分子后,转变为金属性,系统无磁性;而在吸附NO气体分子后变为金属性且具有较大磁矩。这种电子性质的变化能够阐明气体分子吸附的敏感程度。研究结果能够为石墨烯基的气体传感器或者探测器提供理论基础和实验指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解忧
曹松
吴秀
于冰艺
王素芳
关键词:  双层石墨烯  气体分子吸附  金属掺杂  电子结构  第一性原理    
Abstract: The mechanism and sensing properties of gas molecules CO and NO adsorption on the Pd doped AA-stacked bilayer graphene (Pd/BG) were investigated by using first-principles calculations based on density functional theory. After Pd atom replaces one carbon atom in the bilayer graphene, the stable Pd/BG systems can be formed for both the heteroatoms Pd protruding into (Pi) and protruding out (Po) of the interlayer region. The doped layer of bilayer graphene facilitates this region to react with approaching CO and NO molecules because of the higher chemical reactivity of doped Pd atom protrude out of the interlayer region. The doping of Pd atom changes the electronic properties of bilayer graphene. The most stable geometry structure of CO molecule is different from that of the NO molecule adsorption on the Pd/BG system with Po configuration. The CO molecule is at an angle to the graphene surface, while the NO molecules is almost completely perpendicular to the graphene surface. For the most stable structure, the adsorption of NO molecule is more stable than CO molecule on Pd/BG, and the adsorption energy indicate the chemical adsorption for the Po configuration but physical adsorption for the Pi configuration. The CO adsorbed Pd/BG system has dif-ferent electronic structure from that of the NO adsorbed Pd/BG system. After the adsorbing of CO molecule, the Pd/BG system changes from semi-conductive to metallic property, and the Pd/BG-CO system is nonmagnetic, while the Pd/BG-NO system has metallic property with larger magnetic moment. The variational electronic properties can be used to clarify the sensitivity of gas molecule adsorption onto Pd/BG system. Our researching results can provide theoretical basis and experimental guidance for the graphene-based gas sensors or detectors.
Key words:  bilayer graphene    gas molecule adsorption    metal doping    electronic structure    first-principles
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  O793  
基金资助: 国家自然科学基金(11704370);陕西省自然科学基金(2020JM524);西安科技大学博士后基金
作者简介:  解忧,西安科技大学教授,硕士研究生导师。分别于2000年和2012年获得陕西师范大学物理学专业学士和博士学位。主要从事凝聚态物理的研究,在国内外核心期刊发表研究论文六十余篇,其中SCI/EI检索论文三十余篇。
引用本文:    
解忧, 曹松, 吴秀, 于冰艺, 王素芳. 双层石墨烯掺杂Pd对CO和NO的气敏特性研究[J]. 材料导报, 2021, 35(18): 18035-18039.
XIE You, CAO Song, WU Xiu, YU Bingyi, WANG Sufang. The Adsorption Properties of CO and NO on Pd Doped Bilayer Graphene. Materials Reports, 2021, 35(18): 18035-18039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060245  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18035
1 Wang X W, Hu H F. Materials Review B: Research Papers, 2014, 28(12),18(in Chinese).
王晓伟, 胡慧芳. 材料导报:研究篇, 2014, 28(12),18.
2 Wang H, Xu H. Materials Review B: Research Papers, 2012, 26(12), 140(in Chinese).
王辉, 徐慧. 材料导报:研究篇, 2012, 26(12), 140.
3 Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6(9), 652.
4 Xie Y, Cao S, Wu X, et al. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124, 114252.
5 Dong H K, Yang Z L, Guan Z B, et al. Journal of Synthetic Crystals, 2018, 47(5), 1024 (in Chinese).
董海宽, 杨子龙, 关众博, 等.人工晶体学报, 2018, 47(5), 1024.
6 Ma L, Ma H, Zhang J N, et al. Journal of Atomic and Molecular Physics, 2018, 35(4), 577 (in Chinese).
马玲, 马欢, 张建宁, 等.原子与分子物理学报, 2018, 35(4), 577.
7 Zhao C J, Wu H R. Applied Surface Science, 2018, 435, 1199.
8 Corts A D, Villrgas E N, Ortega D E. Applied Surface Science, 2018, 427, 227.
9 Wu H Z, Bandaus S, Liu J, et al. Applied Surface Science, 2018, 430, 125.
10 Wang H, Wang C, Wu H Y, et al. Journal of Xi'an Jiaotong University, 2020, 54(8), 1 (in Chinese).
王欢, 王常, 吴海洋, 等.西安交通大学学报, 2020, 54(8), 1.
11 Liang X Y, Ng S P, Ding N, et al. Computational Materials Science, 2018, 151, 214.
12 Dong H K, Shi L B. Materials Reports, 2019, 33(2), 595.
13 Yuan W H, Bi S H, Cao M S. Materials Review B: Research Papers, 2015, 29(18), 156 (in Chinese).
原卫华, 毕世华, 曹茂盛.材料导报:研究篇, 2015, 29(18), 156.
14 Gu J, Zhang X P, Fu L, et al. Materials Review B: Research Papers, 2017, 31(S1), 210 (in Chinese).
顾健, 张小平, 付磊,等.材料导报:研究篇, 2017, 31(专辑29), 210.
15 Liu X Q, Tian Z Y, Chu W, et al. Acta Physico-Chimica Sinica, 2014, 30(2), 251 (in Chinese).
刘晓强, 田之悦, 储伟, 等.物理化学学报, 2014, 30(2), 251.
16 Ma L, Zhang J M, Xu K W, et al. Applied Surface Science, 2015, 343, 121.
17 Sun J P, Zhang P F. Journal of Hebei Normal University (Natural Science Edition), 2014, 38(5), 476 (in Chinese).
孙建平, 张鹏飞.河北师范大学学报(自然科学版), 2014, 38(5), 476.
18 Sun J P, Liao Y M, Cao X C. Acta Physica Sinica, 2013, 62(3), 036301 (in Chinese).
孙建平, 缪应蒙, 曹相春.物理学报, 2013, 62(3), 036301.
19 Wang H Q, Chen H, Wang H, et al. Materials Review B: Research Papers, 2019, 33(11), 3695 (in Chinese).
王会权, 陈慧, 王后, 等.材料导报:研究篇, 2019, 33(11), 3695.
20 Kresse G, Furthmüller J. Physical Review B, 1996, 54(16), 11169.
21 Perdew J P, Byrke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
22 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758.
23 Lam K T, Liang G. Applied Physics Letters, 2008, 92(22), 223106.
24 Wang Q, Sun Y X, Cui S Y, et al. Journal of Atomic and Molecular Phy-sics, 2017, 34(5), 811 (in Chinese).
王群, 孙玉希, 崔书亚, 等.原子与分子物理学报, 2017, 34(5), 811.
25 Denis P A, Iribarne F. Physical Chemistry Chemical Physics, 2016, 18(35), 24693.
26 Zhang X Y, Xu W X, Dai J P, et al. Carbon, 2017, 118, 376.
27 Denis P A, Huelmo C P. Carbon, 2015, 87, 106.
[1] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[2] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[3] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[4] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[5] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
[6] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[7] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[8] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[9] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[10] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[11] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[12] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[13] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[14] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[15] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed