Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18012-18017    https://doi.org/10.11896/cldb.20090064
  无机非金属及其复合材料 |
Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究
吴方棣1, 胡家朋1, 杨自涛1, 郑辉东2
1 武夷学院福建省生态产业绿色技术重点实验室,武夷山 354300
2 福州大学石油化工学院,福州 350108
First-principles Study on Photocatalytic Properties of Ag-O-N Co-doped Zinc Blende ZnS
WU Fangdi1, HU Jiapeng1, YANG Zitao1, ZHENG Huidong2
1 Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
2 College of Chemical Engineering,Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 10937KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用第一性原理方法计算比较了Ag、O和N单掺杂、Ag-O和Ag-N二元掺杂以及Ag-O-N三元共掺杂闪锌矿ZnS的晶型结构、电荷分布、能带和态密度以及光学特性。N、O对晶格结构的影响大于Ag,结构优化和电荷分布结果显示晶格畸变随着掺杂组分的增多不断增大。形成能计算表明,N最易掺杂,组分越多,掺杂越难实现。Ag、O和N各组分掺杂ZnS后能带间隙均有所减小,Ag、N掺杂ZnS更有利于价带顶上移,部分能带越过费米能级,形成电子跃迁的过渡能级,有利于光催化反应。Ag-O-N三元掺杂ZnS后在可见光区的吸收峰最大,有利于提高ZnS对可见光的利用率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴方棣
胡家朋
杨自涛
郑辉东
关键词:  Ag-O-N 共掺杂ZnS  电子结构  光催化  第一性原理    
Abstract: The crystal structure, charge distribution, energy band, density of states and optical properties of Ag, O, N, Ag-O, Ag-N and Ag-O-N doped zinc blende ZnS were calculated by first-principles method. The results show that the influence of N and O on the lattice structure is greater than that of Ag. The results of structure optimization and charge distribution show that the lattice distortion increases with the increase of doping components. The lattice distortion can promote the separation of photogenerated electrons and holes, which is conducive to the photocatalytic reaction process. The calculation of formation energy shows that N is the most easily doped, and the more doped components, the more difficult the doping is. The results show that the band gap of all doped systems of ZnS decreases, Ag, N doped ZnS is more conducive to the top of valence band moves up than O doped ZnS, and part of the energy band crosses fermi level to form transition energy level for electron transition, which is conducive to photocatalytic reaction. Compared with Ag, O, N doped ZnS, the top of valence band of Ag-O, Ag-N and Ag-O-N co-doped ZnS is further moved up. Therefore, co-doped ZnS should be more conducive to photocatalytic reaction. The absorption peak of Ag-O-N co-doped ZnS is the largest in the visible region, which is conducive to improve the utilization of visible light.
Key words:  Ag-O-N co-doped ZnS    electronic structure    photocatalysis    first-principles
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  O649  
  O439  
基金资助: 中央引导地方科技发展专项(2020L3025);福建省自然科学基金资助项目(2019J01830);福建省高校新世纪优秀人才(2017[52]); 福建省教育厅资助项目(JAT190771);武夷学院高级人才引进项目(YJ201703)
作者简介:  吴方棣,武夷学院化学工程与工艺系讲师,2011年毕业于福州大学化学工程专业,获工学硕士学位,目前主要从事功能催化材料的理论、实验研究。
胡家朋,教授、博士、硕士研究生导师, 武夷学院生态与资源工程学院副院长,福建省高校新世纪优秀人才、福建省优秀教师。目前主要从事MOF材料制备及其催化应用研究,近年来,在环境功能材料及其表面改性领域发表论文 30 多篇。
引用本文:    
吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
WU Fangdi, HU Jiapeng, YANG Zitao, ZHENG Huidong. First-principles Study on Photocatalytic Properties of Ag-O-N Co-doped Zinc Blende ZnS. Materials Reports, 2021, 35(18): 18012-18017.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090064  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18012
1 Lee G J, Wu J J. Powder Technology, 2017, 318, 8.
2 Ashkarran A A.Materials Science in Semiconductor Processing, 2014, 17, 1.
3 Xu X L, Xiao L B, Jia Y M, et al. Journal of Electronic Materials, 2018, 47(1), 536.
4 Luo W S, Ying J S, Yu S G, et al. Ceramics International, 2020, 46, 12096.
5 Dong M, Zhou P, Jiang C J. Chemical Physics Letters, 2017, 668, 1.
6 Shamsipur M, Rajabi H R. Spectrochim Acta A, 2014, 122, 260.
7 Kumar S, Verma N K. Journal of Materials Science: Materials in Electro-nics, 2015, 26, 2754.
8 Singla S, Pal B. Materials Research Bulletin, 2013, 48, 4867.
9 Gahlaut U P S, Kumar V, Goswami Y C.Physica E, 2019, 117, 113792.
10 Khan M S, Shi L J, Yang X T, et al. Journal of Physics: Condensed Matter, 2019, 31, 395702.
11 Zhao Y P, He Y, Zhang M, et al.Materials Reports B:Research Papers, 2020, 34(5), 10013 (in Chinese).
赵宇鹏, 贺勇, 张敏, 等. 材料导报:研究篇, 2020, 34(5), 10013.
12 Zeng D, Fu C L, Cai W, et al. Journal of Synthetic Crystals, 2013, 43(1), 166 (in Chinese).
曾冬, 符春林, 蔡苇, 等. 人工晶体学报, 2013, 43(1), 166.
13 Wang J Q, Zhang Y M, Chen T D, et al. Materials Reports, 2019, 33(Z1), 33 (in Chinese).
王骏齐, 张衍敏, 陈天弟, 等. 材料导报, 2019, 33(Z1), 33.
14 Feng X Y, Zhang C W, Xu X J, et al. Nanoscale Research Letters, 2013, 8, 365.
15 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift fur Kristallographie-Crystalline Materials, 2005, 220(5-6), 567.
16 Perdew J P, Burke K, Ernzerhof M.Physical Review Letters, 1996, 77(18), 3865.
17 Nazzal A, Qteish A. Physical Review B, 1996, 53(13), 8262.
18 Boutaiba F, Belabbes A, Ferhat M, et al. Physical Review B, 2014, 89, 245308.
19 Laporta F A, Gracia L, Andrés J, et al. Journal of the American Ceramic Society, 2014, 97(12), 4011.
20 Xie H Q, Tang L J, Tang J L, et al. Journal of Magnetism and Magnetic Materials, 2015, 377, 239.
21 Zeng F J, Tang Y Q, Yu Y S, et al. Laser & Optoelectronics Progress, 2017, 54(7), 071601 (in Chinese).
曾凡菊, 谭永前, 余幼胜, 等. 激光与光电子学进展, 2017, 54(7), 071601.
22 Kurtoglu M E, Longenbach T, Sohlberg K, et al. Journal of Physical Chemistry C, 2011, 115, 17392.
23 Fu S N, Li C, Wang D, et al. Journal of Atomic and Molecular Physics, 2018, 35(3), 487 (in Chinese).付斯年, 李聪, 王丹, 等. 原子与分子物理学报, 2018, 35(3), 487.
24 Khenata R, Bouhemadou A, Sahnoun M, et al. Computational Materials Science, 2006, 38, 29.
25 Wang Y Q, Zhang R R, Li J B, et al. Nanoscale Research Letters, 2014, 9, 46.
26 Yu J G, Zhou P, Li Q. Physical Chemistry Chemical Physics, 2013, 15, 12040.
27 Wang Q, Zhao W G, Dai J F, et al. Journal Sichuan University(Natural Science Edition), 2018, 55(5), 1019 (in Chinese).
王青, 赵伟刚, 戴剑锋, 等. 四川大学学报: 自然科学版, 2018, 55(5),1019.
28 Zhu S S, Research & Progress of SSE, 2020, 40(1), 48 (in Chinese).
朱姗姗. 固体电子学研究与进展, 2020, 40(1), 48.
29 Altomare M, Selli E. Catalysis Today, 2013, 209, 127.
30 Akhtar M S, Riaz S, Naseem S. Materials Today: Proceedings, 2015, 2, 5528.
31 Xing H Y, Fan G H, Zhang Y, et al.Acta Physica Sinica, 2009, 58(1), 450 (in Chinese).
邢海英, 范广涵, 章勇, 等. 物理学报, 2009, 58(1), 450.
32 Li W L, Hou Q Y, Xu Z C, et al. Molecular Physics, 2019, 117(14), 1858.
33 Han W C, Zhang S, Duan G J, et al. Laser & Optoelectronics Progress, 2014, 51(7), 071604 (in Chinese).
韩伟超, 张颂, 段光杰, 等. 激光与光电子学进展, 2014, 51(7), 071604.
34 Khan M S, Shi L J, Zou B S, et al. Computational Materials Science, 2020,174, 109491.
[1] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[2] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[3] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[6] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[7] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[8] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[9] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[10] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[11] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[12] 解忧, 曹松, 吴秀, 于冰艺, 王素芳. 双层石墨烯掺杂Pd对CO和NO的气敏特性研究[J]. 材料导报, 2021, 35(18): 18035-18039.
[13] 刘景景, 张泽兰, 李诗, 刘宇, 杨佩佩, 李兴. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021, 35(17): 17163-17177.
[14] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[15] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed