Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20030066-11    https://doi.org/10.11896/cldb.20030066
  无机非金属及其复合材料 |
钙钛矿结构SOFC阴极材料的研究进展
余剑峰1,2, 罗凌虹1, 程亮1, 徐序1, 王乐莹1, 余永志1, 夏昌奎2
1 景德镇陶瓷大学江西省燃料电池材料与器件重点实验室,江西 景德镇 333403
2 杭州诺贝尔陶瓷有限公司,杭州 311100
The Research Progress for Perovskite-structure SOFC Cathode Materials
YU Jianfeng1,2, LUO Linghong1, CHENG Liang1, XU Xu1, WANG Leying1, YU Yongzhi1, XIA Changkui2
1 Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China
2 Hangzhou Nabel Group Company Limited, Hangzhou 311100, China
下载:  全 文 ( PDF ) ( 5649KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电化学反应能直接将固体氧化物燃料电池(SOFC)中的化学能转换成电能,具有能量转化效率高、环境友好等优点,被认为是极具发展前途的新型高效能源发电技术。早期SOFC工作温度一般在800 ℃以上,这导致电池寿命缩短、材料成本增加。因此,低温化研发的推进有利于加快SOFC商品化的步伐,而其关键在于开发高性能的阴极材料。
然而,工作温度的降低使得电池各组件的欧姆阻抗和极化阻抗急剧增大,尤其是阴极材料。因此,制备氧裂解催化性能高、极化阻抗低和化学稳定性好的阴极材料是提高SOFC电化学性能和长期稳定性的有效途径。大量研究从阴极材料的组成和微观结构入手,以改善传统阴极材料的电化学性能并开发出新型高性能阴极材料,取得了丰硕的成果。
而高性能阴极材料之所以还未能实现实际应用,主要受制于其会与电解质反应、CO2污染、相变引起的结构不稳定、与电解质膨胀系数相差大引起的不匹配等问题。进一步研究发现,通过引入相容性好的材料作为阻挡层能够阻碍其与电解质发生反应;优化阴极粉体制备工艺、降低焙烧温度可缓解CO2污染问题;过渡金属元素掺杂可以有效控制阴极材料的相变;在阴极材料中引入膨胀系数较小的电解质材料可以改善其与电解质的匹配性。
本文从组成和微观结构的角度,综述了近年来钙钛矿结构SOFC阴极材料的研究进展,并简要分析了阴极材料的组成、微观结构与性能的关系,对今后阴极材料的性能优化和新型阴极材料的开发进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余剑峰
罗凌虹
程亮
徐序
王乐莹
余永志
夏昌奎
关键词:  钙钛矿  固体氧化物燃料电池  阴极材料  电化学性能    
Abstract: Due to several attractive advantages such as high energy conversion efficiency and environmental friendliness, solid oxide fuel cell (SOFC) is regarded as excellent energy generation technology, which can directly convert the chemical energy of fuel into electrical energy by means of electrochemical reaction. However, the operating temperature of above 800 ℃ for early SOFC leads to short life and high cost. Therefore, it is very essential to reduce the operation temperature, thus accelerating the commercialization of SOFC technology. Among various methods, the key is to develop high-performance cathode materials operated at low temperature.
As a matter of fact, the ohmic and polarization resistance of each cell component increase sharply with the decreasing temperature, especially to the cathode materials. Therefore, preparing the cathode materials with highly oxygen-dissociated catalytic performance, lowly cathodic polarization impedance and excellently chemical stability is one of the most effective ways to improve the electrochemical properties and long-term stability of SOFC. Many efforts have been made to optimize the composition of cathode materials and microstructure of electrode to improve the electrochemical properties and develop new materials. Up to now, lots of significant results have been achieved.
Owing to the limitation of the reaction between cathode and electrolyte, CO2 contamination, unstable phase transition, and the expansion coefficient mismatch with electrolyte, the high-performance cathode materials have not been used in practice so far. The further research findings reveal that the problems mentioned above can be solved by different strategies. For example, introducing compatible materials as barrier layer can hamper or even avoid the reaction between cathode and electrolyte, optimizing the preparation process of cathode powder and reducing the baking temperature of cathode can restrict the CO2 contamination, doping with the transition metal element can efficiently stabilize the phase transformation of cathode materials, and introducing the electrolyte materials into cathode materials is used to improve their compatibility.
In this paper, recent advances and achievements on perovskite-structure SOFC cathode materials are reviewed and briefly discussed from the perspective of composition and microstructure. The concluding remarks summarize the effect of composition and the relation between microstructure and properties of the cathode along with the perspective of future research trends on the further performance optimization and development of advanced materials.
Key words:  perovskite    solid oxide fuel cells    cathode materials    electrochemical property
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TQ174  
基金资助: 国家自然科学基金项目(51662015;51802132;51762026);江西省教育厅科技落地计划(KJLD13072)
通讯作者:  luolinghong@tsinghua.org.cn20030066-1   
作者简介:  余剑峰,于2011年获得景德镇陶瓷学院材料科学与工程学院硕士学位。现为景德镇陶瓷大学江西省燃料电池材料与器件重点实验室博士研究生,在罗凌虹教授的指导下进行研究。目前主要研究领域为新能源材料及器件。罗凌虹,二级教授,博导,江西省燃料电池材料与器件重点实验室主任。2003年清华大学材料系材料学专业毕业,2003—2005年在新加坡南洋理工大学做博士后研究。2005年回国后至今,在景德镇陶瓷大学从事科研与教学。长期从事有关固体氧化物燃料电池(SOFC)材料与器件的研究,特别是在流延成型与共烧技术制备平板式固体氧化物燃料电池方面和Ni基阳极抗积碳研究有较丰富的积累。发表相关论文80余篇,其中SCI/EI收录论文60余篇。翻译出版了“流延成型理论与实践”专著。主持并完成了10余项省级项目和5项国家级项目。
引用本文:    
余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
YU Jianfeng, LUO Linghong, CHENG Liang, XU Xu, WANG Leying, YU Yongzhi, XIA Changkui. The Research Progress for Perovskite-structure SOFC Cathode Materials. Materials Reports, 2022, 36(2): 20030066-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030066  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20030066
1 Xia T, Wang J P. Solid oxide fuel cell electrolyte material, Heilongjiang University Press, China, 2013, pp. 1 (in Chinese).
夏天, 王敬平.固体氧化物燃料电池电解质材料,黑龙江大学出版社, 2013, pp. 1.
2 Wang L S, Li Y. Fuel cell, Metallurgical Industry Press, China, 2005, pp. 122 (in Chinese).
王林山, 李瑛. 燃料电池, 冶金工业出版社, 2005, pp. 122.
3 Mao Z Q, Wang C. Low temperature solid oxide fuel cells, Shanghai Scientific & Technical Press, China, 2013, pp. 9 (in Chinese).
毛宗强, 王诚.低温固体氧化物燃料电池, 上海科学技术出版社, 2013, pp. 9.
4 Sun L P. Cathode material of A2BO4 with RP-Perovskite Structure, Heilongjiang University Press, China, 2014, pp. 9 (in Chinese).
孙丽萍.类钙钛矿结构A2BO4型中低温固体氧化物燃料电池阴极材料, 黑龙江大学出版社, 2014, pp. 9.
5 Stambouli A B, Traversa E. Renewable and Sustainable Energy Reviews, 2002, 6 (5), 445.
6 Leng Y J,Chan S H, Jiang S P, et al. Solid State Ionics, 2004, 170 (1-2), 9.
7 Perednis D, Gauckler L J. Journal of Electroceramics, 2005, 14 (2), 103.
8 Leng Y J, Chan S H, Khor K A, et al. International Journal of Hydrogen Energy, 2004, 29 (10), 1025.
9 Lim H T, Virkar A V. Journal of Power sources, 2008, 180 (1), 92.
10 Hu B B. Study of surface oxygen reduction reaction process of solid oxide cathode. Ph.D.Thesis, University of Science and Technology of China, China, 2017 (in Chinese).
胡波兵.固体氧化物阴极表面氧还原反应过程研究. 博士学位论文, 中国科学技术大学, 2017.
11 Chroneos A, Yildiz B, Tarancon A,et al. Energy & Environmental Science, 2011, 4 (8), 2774.
12 Zhang L M, Huang X H, Song X L. Fundamentals of materials science, Wuhan University of Technology Press, China, 2008, pp. 48 (in Chinese).
张联盟, 黄学辉, 宋晓岚. 材料科学基础, 武汉理工大学出版社, 2008, pp. 48.
13 Wang S R, Xiao G, Ye X F. Solid oxide fuel cell-a strong man with non-picky stomach, Wuhan University Press, China, 2013, pp. 67 (in Chinese).
王绍荣, 肖钢, 叶晓峰.固体氧化物燃料电池-吃粗粮的大力士,武汉大学出版社, 2013, pp. 67.
14 Mizusaki J, Yonemura Y, Kamata H,et al. Solid State Ionics, 2000, 132 (3-4), 167.
15 Ullmann H, Trofimenko N, Tietz F, et al. Solid State Ionics, 2000, 138 (1-2), 79.
16 Shao Z P, Zhou W, Zhu Z H. Progress in Materials Science, 2012, 57 (4), 804.
17 Wang L S, Barnett S A. Solid State Ionics, 1995, 76 (1-2), 103.
18 Shlklapper T Z, Radmilovic V, Jacobson C P. Journal of Power Sources, 2008, 175 (1), 206.
19 Zhou W, Shao Z P, Liang F L, et al. Journal of Materials Chemistry, 2011, 21 (39), 15343.
20 Zheng Y P, Ge S, Zhou X Y, et al. Journal of Rare Earths, 2012, 30 (12), 1240.
21 Hosokawa K, Kondo A, Okumiya M, et al. Advanced Powder Technology, 2014, 25 (5), 1430.
22 Itagaki Y, Watanabe S, Yamaji T, et al. Journal of Power Sources, 2012, 214, 153.
23 Wang Y, Cheng J G, Huang M, et al. Applied Surface Science, 2017, 416, 574.
24 Li M M, Cheng J G, Gan Y, et al. Ceramics International, 2018, 44 (3), 3472.
25 Xu X, Wang C, Fronzi M, et al. Materials for Renewable and Sustainable Energy, 2019, 8 (3),15.
26 Mutoro E, Crumlin E J, Biegalski M D, et al. Energy & Environmental Science, 2011, 4 (9), 3689.
27 Hayd J, Dieterle L, Guntow U, et al. Journal of Power Sources, 2011, 196 (17), 7263.
28 Tao Y K, Shao J, Wang W G, et al. Fuel Cells, 2009, 9 (5), 679.
29 Zhao F, Zhang L, Jiang Z Y, et al. Journal of Alloys and Compounds, 2009, 487 (1-2), 781.
30 Sun C W, Hui R, Roller J. Journal of Solid State Electrochemistry, 2010, 14 (7), 1125.
31 Kim J H, Park Y M, Kim T, et al. Korean Journal of Chemical Enginee-ring, 2012, 29 (3), 349.
32 Loureiro F J A, Macedo D A, Nascimento R M, et al. Journal of the European Ceramic Society, 2019, 39 (5), 1846.
33 dos Santos-Gomez L, Porras-Vazquez J M, Martin F, et al. Ceramics International, 2019, 45 (14), 18124.
34 Chaichanawong J, Sato K, Abe H, et al. In: International Conference on Nano/Micro Engineered and Molecular Systems. Bangkok, 2007, pp. 316.
35 Zhao K, Xu Q, Huang D P, et al. Ionics, 2011, 17 (3), 247.
36 Zhi M J, Lee S, Miller N, et al. Energy & Environmental Science, 2012, 5 (5), 7066.
37 Digiuseppe G, Thompson D, Gumeci C, et al. International Journal of Hydrogen Energy, 2019, 44 (49), 27067.
38 Ahuja A, Gautam M, Sinah A, et al. Bulletin of Materials Science, 2020, 43 (1),129.
39 Samreen A, Saher S, Ali S, et al. International Journal of Hydrogen Energy, 2019, 44 (12),6223.
40 Jang D Y, Han G D, Choi H R, et al. Ceramic International, 2019, 45, 12366.
41 Ishihara T, Honda M, Shibayama T, et al. Journal of the Electrochemical Society, 1998, 145 (9), 3177.
42 Fukunaga H, Koyama M, Takahashi N, et al. Solid State Ionics,2000,132(3-4), 279.
43 Chang C L, Hwang B H. Applied Ceramic Technology, 2008, 5 (6), 582.
44 Park I, Choi J, Lee H, et al. Ceramics International, 2013, 39 (5), 5561.
45 Xia C R, Rauch W, Chen F L, et al. Solid State Ionics, 2002, 149 (1-2), 11.
46 Jiang W, Wei B, Lu Z, et al. Fuel Cells, 2014, 14 (6), 966.
47 Chen J, Yang X, Wan D et al. Electrochimica Acta, 2020, 341 (1), 136031.
48 Lyu H, Wu Y J, Huang B, et al. Solid State Ionics, 2006, 177 (9-10), 901.
49 Wang Y S, Wang S R, Wang Z R, et al. Journal of Alloys and Compounds, 2007, 428 (1-2), 286.
50 Shao Z P, Haile S M. Letters to Nature, 2004, 431 (7005), 170.
51 McIntosh S, Vente J F, Haije W G, et al. Chemistry of Materials, 2006, 18 (8), 2187.
52 Jung J, Misture S T, Edwards D D. Solid State Ionics, 2012, 206 (206), 50.
53 Li S Y, Lu Z, Wei B, et al. Journal of Alloys and Compounds, 2008, 448 (1), 116.
54 Zhou W, Shao Z P, Ran R, et al. Journal of Power Sources, 2007, 168 (2), 330.
55 Duan Z S, Yang M, Yan A Y, et al. Journal of Power Sources, 2006, 160 (1), 57.
56 Lim Y H, Lee J, Yoon J S, et al. Journal of Power Sources, 2007, 171 (1), 79.
57 Su C, Xu X M, Chen Y B, et al. Journal of Power Sources, 2015, 274, 1024.
58 Liu B, Jia L C, Ouyang R F, et al. Journal of Ceramics, 2019, 40(1), 99 (in Chinese).
刘波, 贾礼超, 欧阳瑞丰, 等. 陶瓷学报, 2019, 40(1), 99.
59 Lei X L, Xu B, Ouyang C Y, et al. The Journal of Physical Chemistry, 2017, 121 (45), 24987.
60 Fu Y P, Subardi A, Hsieh M, et al. Journal of the American Ceramic Society, 2016, 99(4), 1345.
61 Zhou W, Shao Z P, Ran R, et al. Chemical Communication, 2008, 40 (44), 5791.
62 Zhou W, Jin W Q, Zhu Z H, et al. International Journal of Hydrogen Energy, 2010, 35 (3), 1356.
63 Li M R, Zhao M W, Li F, et al. Nature Communications, 2017, 8, 1.
64 Gu B B, Sunarso J, Zhang Y, et al. Journal of Power Sources, 2018, 405, 124.
65 Ding X F, Gao Z P, Ding D, et al. Applied Catalysis B: Environmental, 2019, 243, 546.
66 Zhao Y Y, Ju Y L, Liu J M, et al. Materials Letters, 2019, 238 (1), 301.
67 Wang F C, Chen D J, Shao Z P. Electrochimica Acta, 2013, 103, 23.
68 Chen Y E, Cai H D, Xu J S, et al. Solid State Sciences, 2019, 97, 106005
69 Simner S, Anderson M, Bonnett J, et al. Solid State Ionics, 2004, 175(1-4), 79.
70 Haanappel V A C, Bar B, Tropartz C, et al. Journal of Fuel Cell Science and Technology, 7(6), 1.
71 Mizusaki J, Okayasu M, Yamauchi S, et al. Journal of Solid State Che-mistry, 1992, 99 (1), 166.
72 Niu Y J, Zhou W, Sunarso J, et al. Journal of Materials Chemistry, 2010, 20(43), 9619.
73 Gao L, Li Q, Sun L P, et al. Journal of Power Sources, 2017, 371, 86.
74 Gao J T, Li Q, Sun L P, et al. Ceramics International, 2019, 45, 20226.
75 Gao L, Li Q, Sun L P, et al. Journal of Materials Chemistry A, 2018, 6(31), 15221.
76 Ni W J, Zhu T L, Chen X Y, et al. Journal of Power Sources, 2020, 451, 227762.
77 Baharuddin N A, Aman N A M N, Muchtar A, et al. Ceramics International, 2019, 45, 12903.
78 Yao C G, Zhang H X, Dong Y J, et al. Journal of Alloys and Compounds, 2019, 797, 205.
79 Yao C G, Zhang H X, Liu X J, et al. Ceramics International, 2019, 45, 7351.
80 Jiang S S, Zhou W, Niu Y J, et al. Chemsuschem, 2012, 5 (10), 2023.
81 Yang G M, Su C, Chen Y B, et al. Journal of the European Ceramic Society, 2015, 35 (9), 2531.
82 Dong F F, Chen Y B, Chen D J, et al. ACS Applied Materials & Interfaces, 2014, 6 (14), 11180.
83 Hayashi N, Yamamoto T, Kageyama H, et al. Angewandte Chemie International Edition, 2011, 50 (52), 12547.
84 Song X Q, Le S R, Zhu X D, et al. International Journal of Hydrogen Energy, 2017, 42, 15808.
85 Liu H Y, Zhu K Y, Liu Y, et al. Electrochimica Acta, 2018, 279, 224.
86 Dong F F, Chen Y B, Ran R, et al. Journal of Materials Chemistry A, 2013, 1 (34), 9781.
87 Zhu M Z, Cai Z, Xia T, et al. International Journal of Hydrogen Energy, 2016, 41 (8), 4784.
88 Dong F F, Ni M, He W, et al. Journal of Power Sources, 2016, 326, 459.
89 Xia W W, Li Q, Sun L P, et al. Journal of the European Ceramic Society, 2020, 40, 1967.
90 Martynczuk J, Efimov K,Robben L, et al. Journal of Membrane Science, 2009, 344 (1-2), 62.
91 Wei B, Lu Z, Huang X Q, et al. Journal of the American Ceramic Society, 2007, 90(10), 3364.
92 Zhao L, He B B, Zhang X Z, et al. Journal of Power Sources, 2010, 195 (7), 1859.
93 Wang S L. Ionics, 2012, 18 (8), 777.
94 Dai Y L, Lou Z L, Wang Z H, et al. International Journal of Hydrogen Energy, 2015, 40 (17), 5939.
[1] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[2] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[3] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[4] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[5] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[6] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[7] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[8] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[9] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[10] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[11] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[12] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[13] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[14] 唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
[15] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed