The Research Progress for Perovskite-structure SOFC Cathode Materials
YU Jianfeng1,2, LUO Linghong1, CHENG Liang1, XU Xu1, WANG Leying1, YU Yongzhi1, XIA Changkui2
1 Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China 2 Hangzhou Nabel Group Company Limited, Hangzhou 311100, China
Abstract: Due to several attractive advantages such as high energy conversion efficiency and environmental friendliness, solid oxide fuel cell (SOFC) is regarded as excellent energy generation technology, which can directly convert the chemical energy of fuel into electrical energy by means of electrochemical reaction. However, the operating temperature of above 800 ℃ for early SOFC leads to short life and high cost. Therefore, it is very essential to reduce the operation temperature, thus accelerating the commercialization of SOFC technology. Among various methods, the key is to develop high-performance cathode materials operated at low temperature. As a matter of fact, the ohmic and polarization resistance of each cell component increase sharply with the decreasing temperature, especially to the cathode materials. Therefore, preparing the cathode materials with highly oxygen-dissociated catalytic performance, lowly cathodic polarization impedance and excellently chemical stability is one of the most effective ways to improve the electrochemical properties and long-term stability of SOFC. Many efforts have been made to optimize the composition of cathode materials and microstructure of electrode to improve the electrochemical properties and develop new materials. Up to now, lots of significant results have been achieved. Owing to the limitation of the reaction between cathode and electrolyte, CO2 contamination, unstable phase transition, and the expansion coefficient mismatch with electrolyte, the high-performance cathode materials have not been used in practice so far. The further research findings reveal that the problems mentioned above can be solved by different strategies. For example, introducing compatible materials as barrier layer can hamper or even avoid the reaction between cathode and electrolyte, optimizing the preparation process of cathode powder and reducing the baking temperature of cathode can restrict the CO2 contamination, doping with the transition metal element can efficiently stabilize the phase transformation of cathode materials, and introducing the electrolyte materials into cathode materials is used to improve their compatibility. In this paper, recent advances and achievements on perovskite-structure SOFC cathode materials are reviewed and briefly discussed from the perspective of composition and microstructure. The concluding remarks summarize the effect of composition and the relation between microstructure and properties of the cathode along with the perspective of future research trends on the further performance optimization and development of advanced materials.
1 Xia T, Wang J P. Solid oxide fuel cell electrolyte material, Heilongjiang University Press, China, 2013, pp. 1 (in Chinese). 夏天, 王敬平.固体氧化物燃料电池电解质材料,黑龙江大学出版社, 2013, pp. 1. 2 Wang L S, Li Y. Fuel cell, Metallurgical Industry Press, China, 2005, pp. 122 (in Chinese). 王林山, 李瑛. 燃料电池, 冶金工业出版社, 2005, pp. 122. 3 Mao Z Q, Wang C. Low temperature solid oxide fuel cells, Shanghai Scientific & Technical Press, China, 2013, pp. 9 (in Chinese). 毛宗强, 王诚.低温固体氧化物燃料电池, 上海科学技术出版社, 2013, pp. 9. 4 Sun L P. Cathode material of A2BO4 with RP-Perovskite Structure, Heilongjiang University Press, China, 2014, pp. 9 (in Chinese). 孙丽萍.类钙钛矿结构A2BO4型中低温固体氧化物燃料电池阴极材料, 黑龙江大学出版社, 2014, pp. 9. 5 Stambouli A B, Traversa E. Renewable and Sustainable Energy Reviews, 2002, 6 (5), 445. 6 Leng Y J,Chan S H, Jiang S P, et al. Solid State Ionics, 2004, 170 (1-2), 9. 7 Perednis D, Gauckler L J. Journal of Electroceramics, 2005, 14 (2), 103. 8 Leng Y J, Chan S H, Khor K A, et al. International Journal of Hydrogen Energy, 2004, 29 (10), 1025. 9 Lim H T, Virkar A V. Journal of Power sources, 2008, 180 (1), 92. 10 Hu B B. Study of surface oxygen reduction reaction process of solid oxide cathode. Ph.D.Thesis, University of Science and Technology of China, China, 2017 (in Chinese). 胡波兵.固体氧化物阴极表面氧还原反应过程研究. 博士学位论文, 中国科学技术大学, 2017. 11 Chroneos A, Yildiz B, Tarancon A,et al. Energy & Environmental Science, 2011, 4 (8), 2774. 12 Zhang L M, Huang X H, Song X L. Fundamentals of materials science, Wuhan University of Technology Press, China, 2008, pp. 48 (in Chinese). 张联盟, 黄学辉, 宋晓岚. 材料科学基础, 武汉理工大学出版社, 2008, pp. 48. 13 Wang S R, Xiao G, Ye X F. Solid oxide fuel cell-a strong man with non-picky stomach, Wuhan University Press, China, 2013, pp. 67 (in Chinese). 王绍荣, 肖钢, 叶晓峰.固体氧化物燃料电池-吃粗粮的大力士,武汉大学出版社, 2013, pp. 67. 14 Mizusaki J, Yonemura Y, Kamata H,et al. Solid State Ionics, 2000, 132 (3-4), 167. 15 Ullmann H, Trofimenko N, Tietz F, et al. Solid State Ionics, 2000, 138 (1-2), 79. 16 Shao Z P, Zhou W, Zhu Z H. Progress in Materials Science, 2012, 57 (4), 804. 17 Wang L S, Barnett S A. Solid State Ionics, 1995, 76 (1-2), 103. 18 Shlklapper T Z, Radmilovic V, Jacobson C P. Journal of Power Sources, 2008, 175 (1), 206. 19 Zhou W, Shao Z P, Liang F L, et al. Journal of Materials Chemistry, 2011, 21 (39), 15343. 20 Zheng Y P, Ge S, Zhou X Y, et al. Journal of Rare Earths, 2012, 30 (12), 1240. 21 Hosokawa K, Kondo A, Okumiya M, et al. Advanced Powder Technology, 2014, 25 (5), 1430. 22 Itagaki Y, Watanabe S, Yamaji T, et al. Journal of Power Sources, 2012, 214, 153. 23 Wang Y, Cheng J G, Huang M, et al. Applied Surface Science, 2017, 416, 574. 24 Li M M, Cheng J G, Gan Y, et al. Ceramics International, 2018, 44 (3), 3472. 25 Xu X, Wang C, Fronzi M, et al. Materials for Renewable and Sustainable Energy, 2019, 8 (3),15. 26 Mutoro E, Crumlin E J, Biegalski M D, et al. Energy & Environmental Science, 2011, 4 (9), 3689. 27 Hayd J, Dieterle L, Guntow U, et al. Journal of Power Sources, 2011, 196 (17), 7263. 28 Tao Y K, Shao J, Wang W G, et al. Fuel Cells, 2009, 9 (5), 679. 29 Zhao F, Zhang L, Jiang Z Y, et al. Journal of Alloys and Compounds, 2009, 487 (1-2), 781. 30 Sun C W, Hui R, Roller J. Journal of Solid State Electrochemistry, 2010, 14 (7), 1125. 31 Kim J H, Park Y M, Kim T, et al. Korean Journal of Chemical Enginee-ring, 2012, 29 (3), 349. 32 Loureiro F J A, Macedo D A, Nascimento R M, et al. Journal of the European Ceramic Society, 2019, 39 (5), 1846. 33 dos Santos-Gomez L, Porras-Vazquez J M, Martin F, et al. Ceramics International, 2019, 45 (14), 18124. 34 Chaichanawong J, Sato K, Abe H, et al. In: International Conference on Nano/Micro Engineered and Molecular Systems. Bangkok, 2007, pp. 316. 35 Zhao K, Xu Q, Huang D P, et al. Ionics, 2011, 17 (3), 247. 36 Zhi M J, Lee S, Miller N, et al. Energy & Environmental Science, 2012, 5 (5), 7066. 37 Digiuseppe G, Thompson D, Gumeci C, et al. International Journal of Hydrogen Energy, 2019, 44 (49), 27067. 38 Ahuja A, Gautam M, Sinah A, et al. Bulletin of Materials Science, 2020, 43 (1),129. 39 Samreen A, Saher S, Ali S, et al. International Journal of Hydrogen Energy, 2019, 44 (12),6223. 40 Jang D Y, Han G D, Choi H R, et al. Ceramic International, 2019, 45, 12366. 41 Ishihara T, Honda M, Shibayama T, et al. Journal of the Electrochemical Society, 1998, 145 (9), 3177. 42 Fukunaga H, Koyama M, Takahashi N, et al. Solid State Ionics,2000,132(3-4), 279. 43 Chang C L, Hwang B H. Applied Ceramic Technology, 2008, 5 (6), 582. 44 Park I, Choi J, Lee H, et al. Ceramics International, 2013, 39 (5), 5561. 45 Xia C R, Rauch W, Chen F L, et al. Solid State Ionics, 2002, 149 (1-2), 11. 46 Jiang W, Wei B, Lu Z, et al. Fuel Cells, 2014, 14 (6), 966. 47 Chen J, Yang X, Wan D et al. Electrochimica Acta, 2020, 341 (1), 136031. 48 Lyu H, Wu Y J, Huang B, et al. Solid State Ionics, 2006, 177 (9-10), 901. 49 Wang Y S, Wang S R, Wang Z R, et al. Journal of Alloys and Compounds, 2007, 428 (1-2), 286. 50 Shao Z P, Haile S M. Letters to Nature, 2004, 431 (7005), 170. 51 McIntosh S, Vente J F, Haije W G, et al. Chemistry of Materials, 2006, 18 (8), 2187. 52 Jung J, Misture S T, Edwards D D. Solid State Ionics, 2012, 206 (206), 50. 53 Li S Y, Lu Z, Wei B, et al. Journal of Alloys and Compounds, 2008, 448 (1), 116. 54 Zhou W, Shao Z P, Ran R, et al. Journal of Power Sources, 2007, 168 (2), 330. 55 Duan Z S, Yang M, Yan A Y, et al. Journal of Power Sources, 2006, 160 (1), 57. 56 Lim Y H, Lee J, Yoon J S, et al. Journal of Power Sources, 2007, 171 (1), 79. 57 Su C, Xu X M, Chen Y B, et al. Journal of Power Sources, 2015, 274, 1024. 58 Liu B, Jia L C, Ouyang R F, et al. Journal of Ceramics, 2019, 40(1), 99 (in Chinese). 刘波, 贾礼超, 欧阳瑞丰, 等. 陶瓷学报, 2019, 40(1), 99. 59 Lei X L, Xu B, Ouyang C Y, et al. The Journal of Physical Chemistry, 2017, 121 (45), 24987. 60 Fu Y P, Subardi A, Hsieh M, et al. Journal of the American Ceramic Society, 2016, 99(4), 1345. 61 Zhou W, Shao Z P, Ran R, et al. Chemical Communication, 2008, 40 (44), 5791. 62 Zhou W, Jin W Q, Zhu Z H, et al. International Journal of Hydrogen Energy, 2010, 35 (3), 1356. 63 Li M R, Zhao M W, Li F, et al. Nature Communications, 2017, 8, 1. 64 Gu B B, Sunarso J, Zhang Y, et al. Journal of Power Sources, 2018, 405, 124. 65 Ding X F, Gao Z P, Ding D, et al. Applied Catalysis B: Environmental, 2019, 243, 546. 66 Zhao Y Y, Ju Y L, Liu J M, et al. Materials Letters, 2019, 238 (1), 301. 67 Wang F C, Chen D J, Shao Z P. Electrochimica Acta, 2013, 103, 23. 68 Chen Y E, Cai H D, Xu J S, et al. Solid State Sciences, 2019, 97, 106005 69 Simner S, Anderson M, Bonnett J, et al. Solid State Ionics, 2004, 175(1-4), 79. 70 Haanappel V A C, Bar B, Tropartz C, et al. Journal of Fuel Cell Science and Technology, 7(6), 1. 71 Mizusaki J, Okayasu M, Yamauchi S, et al. Journal of Solid State Che-mistry, 1992, 99 (1), 166. 72 Niu Y J, Zhou W, Sunarso J, et al. Journal of Materials Chemistry, 2010, 20(43), 9619. 73 Gao L, Li Q, Sun L P, et al. Journal of Power Sources, 2017, 371, 86. 74 Gao J T, Li Q, Sun L P, et al. Ceramics International, 2019, 45, 20226. 75 Gao L, Li Q, Sun L P, et al. Journal of Materials Chemistry A, 2018, 6(31), 15221. 76 Ni W J, Zhu T L, Chen X Y, et al. Journal of Power Sources, 2020, 451, 227762. 77 Baharuddin N A, Aman N A M N, Muchtar A, et al. Ceramics International, 2019, 45, 12903. 78 Yao C G, Zhang H X, Dong Y J, et al. Journal of Alloys and Compounds, 2019, 797, 205. 79 Yao C G, Zhang H X, Liu X J, et al. Ceramics International, 2019, 45, 7351. 80 Jiang S S, Zhou W, Niu Y J, et al. Chemsuschem, 2012, 5 (10), 2023. 81 Yang G M, Su C, Chen Y B, et al. Journal of the European Ceramic Society, 2015, 35 (9), 2531. 82 Dong F F, Chen Y B, Chen D J, et al. ACS Applied Materials & Interfaces, 2014, 6 (14), 11180. 83 Hayashi N, Yamamoto T, Kageyama H, et al. Angewandte Chemie International Edition, 2011, 50 (52), 12547. 84 Song X Q, Le S R, Zhu X D, et al. International Journal of Hydrogen Energy, 2017, 42, 15808. 85 Liu H Y, Zhu K Y, Liu Y, et al. Electrochimica Acta, 2018, 279, 224. 86 Dong F F, Chen Y B, Ran R, et al. Journal of Materials Chemistry A, 2013, 1 (34), 9781. 87 Zhu M Z, Cai Z, Xia T, et al. International Journal of Hydrogen Energy, 2016, 41 (8), 4784. 88 Dong F F, Ni M, He W, et al. Journal of Power Sources, 2016, 326, 459. 89 Xia W W, Li Q, Sun L P, et al. Journal of the European Ceramic Society, 2020, 40, 1967. 90 Martynczuk J, Efimov K,Robben L, et al. Journal of Membrane Science, 2009, 344 (1-2), 62. 91 Wei B, Lu Z, Huang X Q, et al. Journal of the American Ceramic Society, 2007, 90(10), 3364. 92 Zhao L, He B B, Zhang X Z, et al. Journal of Power Sources, 2010, 195 (7), 1859. 93 Wang S L. Ionics, 2012, 18 (8), 777. 94 Dai Y L, Lou Z L, Wang Z H, et al. International Journal of Hydrogen Energy, 2015, 40 (17), 5939.