Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20030052-5    https://doi.org/10.11896/cldb.20030052
  金属与金属基复合材料 |
泡沫铝疲劳性能研究进展
杨旭东1, 刘冠甫1, 胡琪1, 邹田春2, 沙军威3, 纵荣荣4
1 中国民航大学中欧航空工程师学院,天津 300300
2 中国民航大学适航学院,天津 300300
3 天津大学材料科学与工程学院,天津 300350
4 天津金力研汽车工程技术有限公司,天津 300392
Research Progress on Fatigue Properties of Al Foams
YANG Xudong1, LIU Guanfu1, HU Qi1, ZOU Tianchun2, SHA Junwei3, ZONG Rongrong4
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
2 College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
3 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
4 Tianjin Jinliyan Automobile Engineering & Technology Co., Ltd., Tianjin 300392, China
下载:  全 文 ( PDF ) ( 1847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝因其出色的力学、电学、热力学性能而被人们广泛关注和应用。目前,对泡沫铝的研究主要集中在准静态以及高应变率单轴压缩性能上。然而,随着泡沫铝应用环境的复杂化,其在服役过程中承受循环载荷的情况不可避免。因此,充分了解泡沫铝的疲劳性能以及承受循环加载时的失效机理对其在工程中的进一步应用具有重大意义。
根据疲劳试验时加载方式的不同,可将泡沫铝的疲劳分为压-压疲劳、拉伸疲劳两种。由于泡沫铝内部结构不规则,试样个体间差异较大,其疲劳性能离散性明显,因此对疲劳寿命、疲劳强度等参数的定义方式也不尽相同。此外,学者们针对泡沫铝疲劳性能的影响因素展开了一系列研究,并取得了一定成果。目前被广泛认可的泡沫铝疲劳性能的影响因素包括:泡孔结构与形貌、试样尺寸、基体与增强相材料以及热处理等,深入了解影响疲劳性能的因素有助于提高泡沫铝在复杂应用环境下的疲劳寿命与疲劳强度。由于试样结构与研究方法的局限性,目前对于泡沫铝疲劳失效机制的分析尚未得出统一结论,针对其疲劳裂纹扩展方式的研究报道相对较少。研究者们多从疲劳应变-循环次数曲线及内部缺陷等方面入手来分析泡沫铝的失效机理。
本文综合分析国内外文献并结合笔者课题组工作,针对泡沫铝疲劳性能研究中的一些关键问题进行了论述。重点介绍了压-压疲劳、拉伸疲劳两种不同疲劳载荷加载方式下泡沫铝的疲劳性能,包括疲劳寿命、疲劳强度以及应力水平等参数的定义方式;讨论了不同因素对泡沫铝疲劳性能的影响,提出通过减小泡孔尺寸和优化泡孔结构均匀性等方法来改善其疲劳性能。此外,从宏观、微观角度出发,对泡沫铝的疲劳失效机理进行了分析讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
刘冠甫
胡琪
邹田春
沙军威
纵荣荣
关键词:  泡沫铝  疲劳性能  微观结构  失效机理    
Abstract: Aluminum foams have been widely applied due to its excellent mechanical, electrical and thermodynamic properties. At present, the research of aluminum foams mainly focus on quasi-static and high strain rate uniaxial compression properties. However, with the diversification of the application environment of aluminum foams, it is inevitable that the cyclic loading will act on the aluminum foams. Therefore, it is of great significance to fully understand the fatigue properties of aluminum foams and the failure mechanism under cyclic loading.
According to the different loading modes in the fatigue test, the fatigue of aluminum foams can be divided into two types, compression-compression fatigue and tension fatigue. Because of the irregular internal structure and the individual differences among specimens, the fatigue perfor-mance is discrete. Therefore, the definition of fatigue life and fatigue strength is not the same. In addition, scholars have carried out a series of studies on the factors affecting the fatigue properties of aluminum foams,and have made certain progress. The factors affecting the fatigue properties which are widely accepted include the structure and morphology of the foams, the size of the specimen, the matrix and the reinforcement materials, and the heat treatment. The in-depth understanding of the factors affecting the fatigue properties will help to improve the fatigue life and fatigue strength in the complex application environment. Due to the limitations of sample structure and research methods, the failure analysis of aluminum foams have not reached a unified conclusion at present. Meanwhile, there are relatively few reports on the mode of fatigue crack propagation. The researchers mainly analyzed the failure mechanisms of aluminum foams from the aspects of fatigue strain-number of circles curve and internal defects.
This paper analyze the domestic and foreign literature combined with the work of the author's group, and then discuss some important problems in the study of fatigue properties of aluminum foams. The fatigue properties of aluminum foams under two kinds of fatigue loading modes (compression-compression and tension fatigue) are mainly introduced. The different definitions of parameters such as fatigue life, fatigue strength and stress level are discussed. The influence of different factors on fatigue properties of aluminum foams is discussed. In order to improve the fatigue performance, reduction of the pore size and increment of the uniformity of the pore structure were proposed. In addition, the fatigue failure mechanism of aluminum foams is discussed from macroscopic and microscopic perspectives.
Key words:  aluminum foams    fatigue properties    microstructure    failure mechanism
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TB331  
基金资助: 天津市科技计划项目(20YDTPJC01600);中央高校基本科研业务费中国民航大学专项(3122020083)
通讯作者:  xdyang@cauc.edu.cn20030052-1   
作者简介:  杨旭东,中国民航大学副教授、硕士研究生导师。2012年6月博士毕业于天津大学材料学院,2015—2016年法国航空航天大学(ISAE)访问学者。主要从事泡沫铝及复合材料的研究工作。近年来,以第一或通讯作者在Carbon, Composite Structures, International Journal of Fatigue等国内外高水平期刊发表学术论文30余篇。
引用本文:    
杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
YANG Xudong, LIU Guanfu, HU Qi, ZOU Tianchun, SHA Junwei, ZONG Rongrong. Research Progress on Fatigue Properties of Al Foams. Materials Reports, 2022, 36(2): 20030052-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030052  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20030052
1 Baumeister J, Banhart J, Weber M. Materials and Design, 1997, 18, 217.
2 Baroutaji A, Saijia M, Olabi A G, et al. Thin-walled Energy, 2017, 118, 137.
3 Xu Z, Hao H. Journal of Alloys and Compounds, 2014, 617, 207.
4 Kheradmand A B, Lalegani Z. Journal of Materials Science: Materials in Electronics, 2015, 26, 7530.
5 Yang X D, Xu J L, Zou T C, et al. Materials Reports A:Review Papers, 2019(6), 3637(in Chinese).
杨旭东, 许佳丽, 邹田春, 等.材料导报:综述篇, 2019(6), 3637.
6 Yang X D, Bi Z C, Chen Y J, et al. Hot Working Technology, 2015, 44(8), 12 (in Chinese).
杨旭东, 毕智超, 陈亚军, 等.热加工工艺, 2015, 44(8), 12.
7 Yang K M, Yang X D, He C N, et al. Materials Letters, 2017, 209, 68.
8 Liu J F, Liu R P, Shi Q N, et al. Materials Reports A: Review Papers, 2002(8), 65(in Chinese).
刘菊芬, 刘荣佩, 史庆南, 等.材料导报:综述篇, 2002 (8), 65.
9 Garcia-Moreno Francisco. Materials, 2016, 9(2), 85.
10 Banhart J. Progress in Materials Science, 2001, 46(6), 559.
11 Li W T, Yang X D, He C N, et al. Carbon, 2019, 153, 396.
12 Yang K M, Yang X D, Liu E Z, et al. Materials Science and Enginee-ring: A, 2017, 690, 294.
13 Wang J W, Yang X D, Zhang M, et al. Materials Letters, 2015, 161, 763.
14 Wang Y H, Zhai X M, Wang W. Thin Walled Structures, 2017, 116, 225.
15 Shi X P, Liu S Y, Nie H L, et al. International Journal of Mechanical Sciences, 2017, 135, 215.
16 Zeng F, Pan Y, Hu S S. Explosion and Shock Waves, 2002, 22(4), 358 (in Chinese).
曾斐, 潘艺, 胡时胜.爆炸与冲击, 2002, 22(4), 358.
17 Yang K M, Yang X D, Liu E Z, et al. Materials Science and Enginee-ring: A, 2018, 729, 487.
18 Mu Y, Yao G, Cao Z, et al. Scripta Materialia, 2011, 64(1), 61.
19 Talebi S, Sadighi M, Aghdam M M, et al. Materials Today Communications, 2017, 13, 170.
20 Anbuchezhiyan G, Mohan B, Sathianarayanan D, et al. Journal of Alloys and Compounds, 2017, 719, 125.
21 Zhou P, Beeh E, Kriescher M, et al. International Journal of Impact Engineering, 2016, 93, 76.
22 Yang X D, Shi J, Cheng J, et al. Journal of Aeronautical Materials, 2017, 37(2), 55 (in Chinese).
杨旭东, 石建, 程洁, 等.航空材料学报, 2017, 37(2), 55.
23 Saadatfar M, Mukherjee M, Madadi M, et al. Acta Materialia, 2012, 60(8), 3604.
24 Idris M I, Vodenitcharova T, Hoffman M. Materials Science and Enginee-ring: A, 2009, 517, 37.
25 Wang J, Yang X, Zhang M, et al. Materials Letters, 2015, 161, 763.
26 Yu H, Guo Z, Li B, et al. Materials Science and Engineering: A, 2007, 454, 542.
27 Sugimura Y, Rabiei A, Evans A G, et al. Materials Science and Enginee-ring: A, 1999, 269(1-2), 38.
28 Harte A M, Fleck N A, Ashby M F. Acta Materialia, 1999, 47, 2511.
20030052-529 Ashby M F, Evans A, Fleck N A, et al. Applied Mechanics Reviews, 2012, 23(6), 119.
30 Hakamada H, Kuromura T, Chino Y, et al. Materials Science and Engineering: A, 2007, 459(1), 286.
31 Zhou J, Soboyejo W O. Materials Science and Engineering: A, 2004, 369(2), 23.
32 Lehmhus D, Banhart J. Journal and Material Science, 2002, 37, 3447.
33 Katona B, Szebenyi G, Orbuloy I N. Materials Science and Engineering: A, 2017, 679, 350.
34 Kim A, Kim I. Acta Mechanica Solida Sinica, 2008, 21(4), 354.
35 Taherishargh M, Katona B, Fiedler T, et al. Journal of Composite Mate-rials, 2017, 51(6), 773.
36 Kolluri M, Mukherjee M, Garcia-moreno F, et al. Acta Materialia, 2008, 56(5), 1114.
37 Banhart J, Brinkers W. Journal of Materials Science Letters, 1999, 18(8), 617.
38 Linul E, Serban D A, MarsavinaanD L, et al. Fatigue & Fracture of Engineering Materials and Structures, 2016, 40(4), 597.
39 Motz C, Friedl O, Pippan R. International Journal of Fatigue, 2005, 27, 1571.
40 Mccullough K Y G, Fleck N A, Ashby M F. Fatigue & Fracture of Engineering Materials & Structures, 2000, 233(3), 199.
41 Szlancsik A, Katona B, Orbulov I N, et al. IOP Conference Series: Mate-rials Science and Engineering, IOP Publishing, 2018, 426(1), 012045.
42 Yang X D, Chen Y J, Shi C S, et al. Journal of Materials Engineering, 2017, 45(9), 93 (in Chinese).
杨旭东, 陈亚军, 师春生, 等.材料工程, 2017, 45(9), 93.
43 Yang X D, Hu Q, Li W T, et al. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(4), 744.
44 Yang X D, Hu Q, Du J, et al. International Journal of Fatigue, 2019, 121, 272.
45 Zettl B, Mayer H, Stanzl-Tschegg S E, et al. Materials Science and Engineering: A, 2000, 292(1), 1.
46 Ingraham M D, Demaria C J, Issen K A, et al. Materials Science and Engineering: A, 2009, 504(2), 150.
47 Bart-Smith H, Bastawros A F, Mumm D R, et al. Acta Materialia, 1998, 46(10), 3583.
48 Gaitanaros S, Kyriakides S, Kraynik A M. International Journal of Solids and Structures, 2012, 49, 2733.
49 Saadatfar M, Mukherjee M, Madadi M. Acta Materialia, 2012, 60, 3604.
50 Kafka O L, Ingraham M D, Morrison D J, et al. Journal of Materials Engineering and Performance, 2014, 23(3), 759.
51 Pinto H, Arwade S R. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(12), 1021.
52 Zhao M D, Fan X, Fang Q Z, et al. Materials Letters, 2015, 160, 68.
53 Yavari S A, Wauthle R, Stok J V D, et al. Materials Science and Engineering: C, 2013, 33, 4849.
54 Hedayati R, Hosseini T H, Sadighi M, et al. International Journal of Fatigue. 2016, 84, 67.
55 Li F, Li J, Huang T, et al. Journal of the Mechanical Behavior of Biome-dical Materials, 2017, 65, 814.
56 Li F, Li J, Xu G, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46, 104.
57 Seki H, Tane M, Otsuka M, et al. Journal of Materials Research, 2007, 22(5), 1331.
58 Seki H, Tane M, Nakajima H, et al. Copper & Copper Alloy, 2007, 46(1), 90.
59 Seki H, Tane M, Nakajima H, et al. Materials Transactions, 2008, 1(49), 144.
60 Olurin O B, Mccullough K Y G, Fleck N A, et al. International Journal of Fatigue, 2001, 23, 375.
61 Hu Y, Fang Q Z, Sha B L, et al. Composite Structures, 2018, 200, 59.
[1] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[4] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[5] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[6] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[7] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[8] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[9] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[10] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[11] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[12] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[13] 张子晨, 许涛, 武艺卿, 许岳磊, 夏兴川, 丁俭, 陈学广, 刘海峰, 韩星, 高玉刚, 刘永长. 泡沫铝三明治板材的研究现状[J]. 材料导报, 2021, 35(23): 23121-23130.
[14] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[15] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed