Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23121-23130    https://doi.org/10.11896/cldb.20060051
  金属与金属基复合材料 |
泡沫铝三明治板材的研究现状
张子晨1, 许涛1, 武艺卿1, 许岳磊1, 夏兴川1,2, 丁俭1, 陈学广1, 刘海峰3, 韩星3, 高玉刚3, 刘永长2
1 河北工业大学材料科学与工程学院,天津 300401
2 天津大学材料科学与工程学院,天津 300072
3 中信戴卡股份有限公司,秦皇岛 066300
Research Progress of Aluminum Foam Sandwich
ZHANG Zichen1, XU Tao1, WU Yiqing1, XU Yuelei1, XIA Xingchuan1,2, DING Jian1, CHEN Xueguang1, LIU Haifeng3, HAN Xing3, GAO Yugang3, LIU Yongchang2
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
3 CITIC Dicastal Co., Ltd., Qinhuangdao 066300, China
下载:  全 文 ( PDF ) ( 5761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 闭孔泡沫铝是一种结构与功能一体化的多孔材料,具有轻质、高比强度和比刚度、能量吸收能力强等优点,但也存在着表层单层孔壁力学性能较差、表面粗糙度高以及耐腐蚀性差等不足。为了解决上述问题,研究人员设计并开发了泡沫铝三明治板材(AFS),其制备方法主要分为物理连接法和冶金连接法。传统物理连接法制备的AFS存在着界面结合强度低和耐候性较差等不足;粉末冶金和焊接法等冶金连接法所制备的板材实现了芯材与面板之间的冶金结合,极大地提升了板材的力学性能和服役寿命,但依然存在产品尺寸范围较小、工艺复杂、生产效率低、成本较高等不足。目前,针对AFS力学性能的研究主要集中在准静态和动态变形、失效模式、能量吸收能力等方面,研究表明其动静态力学性能主要受控于实体面板和泡沫铝芯层的性质、界面结合强度等。近年来有限元分析法逐渐得到了研究者们的青睐,但仍存在许多问题需要解决。本文结合国内外文献,概述了近年来AFS在制备技术、力学性能等方面的研究进展以及产业化应用前景,从实体面板与泡沫铝芯层的物理连接和冶金连接两个方面介绍了主要制备技术,讨论和总结了准静态和动态力学性能的主要影响因素与机理,分析了国内外应用现状并对应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张子晨
许涛
武艺卿
许岳磊
夏兴川
丁俭
陈学广
刘海峰
韩星
高玉刚
刘永长
关键词:  泡沫铝  三明治板材  制备技术  力学性能    
Abstract: Closed-cell aluminum foam is a structure-function integrated porous material, which has the advantages of light weight, high specific strength specific stiffness and high energy absorption capacity. However, aluminum foam still has some shortcomings such as poor mechanical prope-rties of the single-layer surface, high surface roughness and poor corrosion resistance. In order to solve the above problems, the researchers designed and developed aluminum foam sandwich (AFS), and the preparation methods are mainly divided into physical connection methods and metallurgical connection methods. AFS prepared by the traditional physical connection method has the defects of low interface bonding strength and poor weather resistance; AFS produced by metallurgical connection methods such as powder metallurgy and welding method realizes the metallurgical combination between the core material and the panel, which greatly improves the mechanical properties and service life, but there are still unfavorable factors such as a small product size range, complex process, low production efficiency, and high cost. At present, the researches on the mechanical properties of AFS mainly focus on quasi-static and dynamic deformation, failure modes, energy absorption capabilities, etc. The researches show that dynamic and static mechanical properties are mainly controlled by the properties of solid panels and aluminum foam core, interface bonding strength and test parameters. In recent years, the finite element analysis method has gradually been favored by researchers, but there are still many problems that need to be solved. This paper, combined with domestic and foreign literature, outlined the prepa-ration technology, mechanical properties research progress and industrial application prospects of AFS in recent years. The main preparation technologies were introduced from the physical connection and metallurgical connection of the solid panel and the aluminum foam core layer. The main influencing factors and mechanisms of quasi-static and dynamic mechanical properties were discussed and summarized, the domestic and international application status were analyzed and the application prospect was prospected.
Key words:  aluminum foam    sandwich panels    preparation technology    mechanical property
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TG146.2  
基金资助: 河北省重点研发项目(19251013D);河北省军民融合项目;河北省省校合作开发基金
通讯作者:  xc_xia@hebut.edu.cn   
作者简介:  张子晨,2018年6月毕业于江苏科技大学,获得工学学士学位。现为河北工业大学材料科学与工程学院博士研究生,主要研究方向为泡沫铝结构材料。
夏兴川,工学博士(后)、副研究员、博士研究生导师;担任中国材料研究学会青年委员会理事,河北省“三三三”人才,河北工业大学“元光学者”;以第一完成人获得河北省技术发明二等奖一项,以第三完成人获得河北省科学技术进步一等奖一项;主持国家重点研发计划子课题、中央军委装发部预研基金,国家自然科学基金、河北省军民融合发展专项、河北省重点研发计划、河北省省校科技合作开发资金项目、河北省科技计划项目和横向科技开发项目多项;以第一作者/通讯作者发表SCI期刊论文30余篇;以第一发明人授权国家发明专利9项。
引用本文:    
张子晨, 许涛, 武艺卿, 许岳磊, 夏兴川, 丁俭, 陈学广, 刘海峰, 韩星, 高玉刚, 刘永长. 泡沫铝三明治板材的研究现状[J]. 材料导报, 2021, 35(23): 23121-23130.
ZHANG Zichen, XU Tao, WU Yiqing, XU Yuelei, XIA Xingchuan, DING Jian, CHEN Xueguang, LIU Haifeng, HAN Xing, GAO Yugang, LIU Yongchang. Research Progress of Aluminum Foam Sandwich. Materials Reports, 2021, 35(23): 23121-23130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060051  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23121
1 Banhart J. Progress in Materials Science, 2001, 46(6),559.
2 Banhart J, Weaire D. Physics Today, 2002, 55(7),37.
3 Zhang Z, Ding J, Xia X C, et al. Materials & Design, 2015, 88,359.
4 Mu J C, Xi H F, Long Z Q, et al. Journal of Experimental Mechanics, 2009, 24(3),223 (in Chinese).
穆建春, 习会峰, 龙志勤, 等. 实验力学, 2009, 24(3),223.
5 Li J. Research on strengthening process and mechanism of high porosity open-pore aluminum foam. Master's Thesis, Taiyuan University of Science and Technology, China, 2016 (in Chinese).
李杰. 高孔隙率通孔泡沫铝的强化工艺与机理研究.硕士学位论文, 太原科技大学, 2016.
6 Mondal D P, Jha N, Gull B, et al. Materials Science & Engineering A, 2013, 560,601.
7 Liu Y Q, Fan J Z, Ma Z L, et al. Materials Reports A: Review Papers, 2017, 31(7),101 (in Chinese).
刘彦强, 樊建中, 马自力, 等.材料导报:综述篇, 2017, 31(7),101.
8 Banhart J, Seeliger H W. Advanced Engineering Materials, 2008, 10(9),793.
9 Banhart J, Seeliger H W. Advanced Engineering Materials, 2012, 14(12),1082.
10 Schwingel D, Seeliger H W, Vecchionacci C, et al. Acta Astronautica, 2007, 61(1-6),326.
11 Zhang M, Chen C J, Yao G C. Materials Reports, 2008, 22(1),90 (in Chinese).
张敏, 陈长军, 姚广春.材料导报, 2008, 22(1),90.
12 Song B N. Study on preparation of aluminum foam sandwich and mechanical properties.Ph.D. Thesis, Northeastern University, China, 2012 (in Chinese).
宋滨娜. 金属泡沫铝夹芯板的制备与力学性能研究.博士学位论文, 东北大学, 2012.
13 Harte A M, Fleck N A, Ashby M F. Advanced Engineering Materials, 2000, 2(4),219.
14 Crupi V, Montanini R. International Journal of Impact Engineering, 2007, 34(3),509.
15 Kulkarni N, Mahfuz H, Jeelani S, et al. Composite Structures, 2003, 59(4),499.
16 Wang N Z, Chen X, Li A, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(2),359.
17 Jin M J, Zhao Y T, Dai Q X, et al. Journal of Materials Science and Engineering, 2005, 23(4),585.
金明江, 赵玉涛, 戴起勋,等. 材料科学与工程学报, 2005, 23(4),585.
18 Chen S. Study on preparation and mechanical property of basalt fiber reinforced foam aluminum sandwich panels. Master's Thesis, Harbin Engineering University, 2012 (in Chinese).
陈思. 玄武岩纤维增强泡沫铝夹层板的制备与力学性能研究. 硕士学位论文, 哈尔滨工程大学, 2012.
19 Sun W. Fundamental research on preparation of aluminum foam sandwich. Master's Thesis, Northeastern University, China, 2013 (in Chinese).
孙威. 泡沫铝夹芯板制备工艺基础研究.硕士学位论文, 东北大学, 2013.
20 Liu J. Study on preparation and mechanical properties of aluminum foam sandwich. Master's Thesis, Northeastern University, China, 2014 (in Chinese).
刘佳. 泡沫铝夹芯板的制备与力学性能研究.硕士学位论文, 东北大学, 2014.
21 王远林, 赵祥云, 李伟,等. 中国专利,CN205399876U, 2016.
22 Song X F. Study on pull off damage of the composite foam sandwich panels which embedded bolted joints.Master's Thesis, Harbin Engineering University, 2014 (in Chinese).
宋小飞. 复合材料泡沫夹芯板预埋螺栓连接拉脱破坏的研究. 硕士学位论文, 哈尔滨工程大学, 2014.
23 Raeisi S, Kadkhodapour J, Tovar A. Composite Structures, 2019, 214,34.
24 Sun Q. Study on preparation, characterization and properties of aluminum alloy foam by powder metallurgy method.Master's Thesis, General Research Institute for Nonferrous Metals, China, 2016 (in Chinese).
孙琦. 粉末冶金泡沫铝合金的制备、表征与性能研究.硕士学位论文, 北京有色金属研究总院, 2016.
25 Wang L C, Chen Y Y, You X H, et al. Powder Metallurgy Technology, 2010, 28(6),434 (in Chinese).
王录才, 陈玉勇, 游晓红, 等.粉末冶金技术, 2010, 28(6),434.
26 Zu G Y, Zhang M, Yao G C. Rare Metal Materials and Engineering, 2008, 37(3),485 (in Chinese).
祖国胤, 张敏, 姚广春.稀有金属材料与工程, 2008, 37(3),485.
27 Zu G Y, Li H, Li B, et al. Special Casting & Nonferrous Alloys, 2009, 29(2),176 (in Chinese).
祖国胤, 李鸿, 李兵, 等.特种铸造及有色合金, 2009, 29(2),176.
28 Zhang M, Zu G Y, Yao G C, et al. Journal of Functional Materials, 2006, 37(2),281 (in Chinese).
张敏, 祖国胤, 姚广春, 等.功能材料, 2006, 37(2),281.
29 Zu G Y, Zhang M, Yao G C, et al. The Chinese Journal of Process Engineering, 2006, 6(6),973 (in Chinese).
祖国胤, 张敏, 姚广春, 等.过程工程学报, 2006, 6(6),973.
30 Zu G Y, Zou Y, Li H, et al. Journal of Northeastern University (Natural Science), 2009, 30(2), 246 (in Chinese).
祖国胤, 邹颖, 李鸿, 等.东北大学学报,自然科学版, 2009, 30(2),246.
31 Zu G Y, Hao L, Zhang M, et al. Journal of Northeastern University (Natu-ral Science), 2007, 28(12),55 (in Chinese).
祖国胤, 郝亮, 张敏, 等.东北大学学报,自然科学版, 2007, 28(12),55.
32 Guan Z H. On preparation of aluminum foam sandwich by packet rolling-powder metallurgy. Master's Thesis, Northeastern University, China, 2011 (in Chinese).
关志昊. 包套轧制—粉末冶金法制备泡沫铝夹心板材料的研究. 硕士学位论文, 东北大学, 2011.
33 Song B N, Zu G Y, Yao G C, et al. Journal of Northeastern University (Natural Science), 2011, 32(2),277 (in Chinese).
宋滨娜, 祖国胤, 姚广春, 等.东北大学学报,自然科学版, 2011, 32(2),277.
34 Ma J J, Song B N, Zhang S H, et al. Light Metals, 2015(2),45 (in Chinese).
马俊杰, 宋滨娜, 章顺虎, 等.轻金属, 2015(2),45.
35 Wang Y Q, Ren X P, Hou H L, et al. Powder Technology, 2015, 275,344.
36 Luo H J, Lin H, Zhao Z H, et al. Procedia Materials Science, 2014, 4,39.
37 Huang B S, Zhao X, Wu X P, et al. Materials Reports A: Review Papers, 2017, 31(10),69 (in Chinese).
黄本生, 赵星, 吴序鹏, 等.材料导报:综述篇, 2017, 31(10),69.
38 Li J H. Research on brazing process and the property of aluminum foam. Master's Thesis, Hebei University of Technology, China, 2015 (in Chinese).
李军晖. 泡沫铝钎焊工艺及性能的研究. 硕士学位论文, 河北工业大学, 2015.
39 Song Y F, Xiao L R, Zeng D L, et al. Mining and Metallurgical Engineering, 2014, 34(3),119 (in Chinese).
宋宇峰, 肖来荣, 曾德露, 等.矿冶工程, 2014, 34(3),119.
40 Zhang J, Cheng H F, Qin X X, et al. Material Research and Application, 2017, 11(3),167 (in Chinese).
张军, 程和法, 秦晓雄, 等.材料研究与应用, 2017, 11(3),167.
41 Huang Y X, Gong J, Lyu S X, et al. Materials Science & Engineering A, 2012, 552(5),283.
42 Yu C C. Preparation and reliability evalution of the aluminum foam sandwich.Master's Thesis, Harbin Institute of Technology, China, 2012 (in Chinese).
于冲冲. 泡沫铝夹芯三明治结构制备及可靠性评价. 硕士学位论文, 哈尔滨工业大学, 2012.
43 Wan L, Huang Y X, Lyu S X, et al. Composite Structures, 2015, 123,366.
44 Shi Y W, Tang W. Electric Welding Machine, 2000, 30(1),6 (in Chinese).
史耀武, 唐伟.电焊机, 2000, 30(1),6.
45 Liang W, Zhang C B, Wu Y Q, et al. Welding & Joinging, 2018(11),19 (in Chinese).
梁武, 张春波, 乌彦全,等. 焊接, 2018(11),19.
46 Hangai Y, Koyama S, Hasegawa M, et al. Materials Transactions, 2012, 53(4),584.
47 Kathuria Y P. Journal of Materials Processing Technology, 2003,142,466.
48 Zhang Z, Xia X C, Wang J, et al. Materials Science, 2016, 22(3),337.
49 Chen Q. Research on melt foaming preparation of aluminum foam core sandwich plate.Master's Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
陈青. 泡沫铝芯夹层板的熔体发泡制备研究. 硕士学位论文, 昆明理工大学, 2016.
50 左孝青, 陈青, 陆建生, 等. 中国专利,CN105642671A, 2016.
51 Liu Z Y. Research on the preparation of aluminum foam sandwich plate by vacuum foaming. Master's Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
刘占勇. 泡沫铝芯夹层板的真空发泡制备研究. 硕士学位论文, 昆明理工大学, 2016.
52 Krner C, Hirschmann M, Wiehler H. Materials Transactions, 2006, 47(9),2188.
53 Hartmann J, Trepper A, Krner C. Advanced Engineering Materials, 2011, 13(11),1050.
54 Nabavi A, Khaki J V. Surface & Interface Analysis, 2010, 42(4),275.
55 Sha J B, Yip T H, Teo M H. Progress in Natural Science, Materials International, 2011, 21(2),127.
56 Zhang H S, Zhao H Y, Zhang M H, et al. Journal of Ningbo University (Natural Science & Engineering Edition), 2007, 20(1),118 (in Chinese).
谌河水, 赵恒义, 张明华, 等.宁波大学学报(理工版), 2007, 20(1), 118.
57 Yu J L, Wang X, Wei Z G, et al. International Journal of Impact Engineering, 2003, 28(3),331.
58 Yan L L, Yu B, Han B, et al. Composites Science and Technology, 2013, 86,142.
59 Endut N, Hazza M H F Al, Sidek A A, et al. Materials Science and Engineering, 2018, 290(1),012084.
60 Zhang H L, Dou R J, Zhao A, et al. Transactions of the Indian Institute of Metals, 2019, 72,693.
61 Zhao A, Qiu S W, Hu Y B, et al. Materials Transactions, 2017, 58(6),880.
62 Tian K N, Wang L C, Wang Y L, et al. Foundry Equipment and Techno-logy, 2015(6),48 (in Chinese).
田克楠, 王录才, 王艳丽, 等.铸造设备与工艺, 2015(6),48.
63 Yan L L, Han B, Yu B, et al. Materials & Design, 2014, 60,510.
64 Pandey A, Muchhala D, Kumar R, et al. Composites Part B, 2019, 183, 107729.
65 Styles M, Compston P, Kalyanasundaram S. Composite Structures, 2007, 80(4),532.
66 Yang X D, Cheng Y, Zheng Y X, et al. Hot Working Technology, 2019, 48(12),16 (in Chinese).
杨旭东, 成莹, 郑远兴, 等.热加工工艺, 2019, 48(12),16.
67 Mohan K, Yip T H, Idapalapati S, et al. Materials Science & Engineering A, 2011, 529,94.
68 Villanueva G R, Cantwell W J. Journal of Materials Science Letters, 2003, 22(6),417.
69 Xia Z C, Zhang J L, Zhou J Y, et al. Engineering Mechanics, 2017, 34(10),214 (in Chinese).
夏志成, 张建亮, 周竞洋, 等.工程力学, 2017, 34(10),214.
70 Abrate S. Composite Structures, 2001, 51(2),129.
71 Zhang M, Zu G Y, Yao G C, et al. Nonferrous Metals, 2008, 60(3),16 (in Chinese).
张敏, 祖国胤, 姚广春, 等.有色金属, 2008, 60(3),16.
72 Zu G Y, Liu J, Li X B, et al. Joumal of Nonheastem University (Natuml Science), 2014, 35(11),1583 (in Chinese).
祖国胤, 刘佳, 李小兵, 等.东北大学学报,自然科学版, 2014, 35(11),1583.
73 Yu J L, Wang E, Li J R, et al. International Journal of Impact Engineering, 2008, 35(8),885.
74 Xi H F, Tang L Q, Yu J L, et al. International Journal of Structural Stability & Dynamics, 2015, 15(4),1450063.
75 Han F S. Spacecraft Environment Engineering, 2013, 30(6),570 (in Chinese).
韩福生. 航天器环境工程, 2013, 30(6),570.
76 Su S N. Collision analysis of automotive power battery pack with lightweight foam aluminum sandwich panel structure. Master's Thesis, South China University of Technology, China, 2018 (in Chinese).
苏思诺. 轻质泡沫铝夹层板箱体结构的汽车动力电池包碰撞分析. 硕士学位论文, 华南理工大学, 2018.
77 Ma C C, Lan F C, Chen J Q, et al. Chinese Journal of Automotive Engineering, 2020, 10(1),34 (in Chinese).
马聪承, 兰凤崇, 陈吉清, 等.汽车工程学报, 2020, 10(1),34.
78 Banhart J. Mrs Bulletin, 2003, 28(4),290.
79 Lefebvre L P, Banhart J, Dunand D C. Advanced Engineering Materials, 2008, 10(9),775.
80 Zhang G Q. Foundry Technology, 2014, 35(12),2824 (in Chinese).
张国强.铸造技术, 2014, 35(12),2824.
81 Wang L C, Zeng S Y, Wang F. Materials For Mechanical Engineering, 2006, 30(10),56 (in Chinese).
王录才, 曾松岩, 王芳.机械工程材料, 2006, 30(10),56.
82 Yang Z H, Luo L F, Chen K B, et al. Light Metals, 2004(6),3 (in Chinese).
杨振海, 罗丽芬, 陈开斌, 等.轻金属, 2004(6),3.
83 Cao L Y, Luo X B, Liu G Q, et al. Packaging Engineering, 2018, 39(3),223 (in Chinese).
曹凌宇, 罗兴柏, 刘国庆, 等.包装工程, 2018, 39(3),223.
84 Zheng W. Research on design and anti-penetration properties of ceramic composite armor containing aluminum foam wave-absorbing layer. Ph.D. Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
郑伟. 含泡沫铝吸波层陶瓷复合装甲设计及其抗侵彻特性研究. 博士学位论文, 哈尔滨工业大学, 2015.
85 Teng P B, Cheng S J, Song X B,et al. Industrial Construction, 2016, 46(8),79 (in Chinese).
滕培宾, 程书剑, 宋晓冰, 等. 工业建筑, 2016, 46(8),79.
86 Wang J, Deng Y M, Fan Z C. Railway Vehicle, 2009, 47(3),23 (in Chinese).
王军, 邓艳民, 樊泽臣.铁道车辆, 2009, 47(3),23.
87 García-Moreno F. Materials, 2016, 9(2),85.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed