Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3114-3121    https://doi.org/10.11896/cldb.19050196
  金属与金属基复合材料 |
梯度纳米结构材料疲劳性能研究进展
付磊1,2, 林莉3, 罗云蓉2, 谢文玲2, 王清远1, 李辉2
1 四川大学空天科学与工程学院,成都 610065;
2 四川轻化工大学机械工程学院,自贡 643000;
3 四川轻化工大学材料科学与工程学院,自贡 643000
Progress in Fatigue Properties of Gradient Nanostructured Materials
FU Lei1,2, LIN Li3, LUO Yunrong2, XIE Wenling2, WANG Qingyuan1, LI Hui2
1 School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;
2 School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China;
3 School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China;
下载:  全 文 ( PDF ) ( 10783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用严重塑性变形以及电沉积等方法制备的块体纳米晶、超细晶材料具有优越的力学性能以及独特的物理化学性能,但其韧性和抗应变局域化能力显著降低,加工硬化能力消失。块体纳米晶、超细晶材料由于具有较高的强度,能有效抑制疲劳裂纹萌生,从而有效提高应力控制循环载荷作用下的高周疲劳性能,但其塑性差,缩短了应变控制作用下的低周疲劳寿命。
事实上,工程结构疲劳失效往往起源于材料表面,在循环载荷作用下,疲劳裂纹通常从材料表面萌生并向内部扩展。因此,优化材料表面微观组织结构和性能有利于提高其服役寿命。为此,近年来,人们通过开发一些新颖的表面改性方法来制备梯度纳米结构材料,这些方法也被称为表面自纳米化。与其他传统的表面改性技术相比,利用表面纳米化技术在金属材料表面制备梯度纳米结构表层,所得纳米结构表层具有硬度高、表面粗糙度小以及梯度层厚等特点。梯度纳米结构材料表层由纳米晶构成,而芯部仍然保持未变形粗晶基体结构,晶粒尺寸由表及里逐渐从纳米尺度变化到微米尺度,这一特殊的材料构筑形式使其具有优越的抗高、低周疲劳性能。
目前,关于梯度纳米结构材料的力学性能,尤其是疲劳性能的研究已经成为该领域的一大研究热点,许多工程实际应用都得益于这一领域的研究成果,然而,目前尚缺乏文献系统总结这一研究成果。为此,本文系统总结了近年来关于梯度纳米结构材料疲劳性能研究的最新进展,对影响其疲劳性能的因素进行了深入分析,对梯度纳米结构材料疲劳性能研究所面临的许多亟待解决的基础科学问题进行了讨论和展望,为梯度纳米结构材料在这一工程领域的应用提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付磊
林莉
罗云蓉
谢文玲
王清远
李辉
关键词:  梯度纳米结构材料  块体纳米金属  疲劳性能    
Abstract: The bulk nano/ultrafine grained (NG/UFG) metals were prepared by means of severe plastic deformation (SPD) or electrodeposition, which display many attractive physicochemical and mechanical properties, but the toughness and strain localization resistance of bulk NG/UFG metals significantly decrease, and the work-hardening ability disappears. Therefore, The high cycle fatigue lifetime (HCF) of bulk NG/UFG me-tals under stress-controlled cyclic loading was increased by suppressing fatigue crack initiation on account of its high strength, while the low cycle fatigue lifetime (LCF) under strain-controlled cyclic loading usually decreases due to lack of ductility.
In practice, the fatigue failure of engineering structures mostly originates from the surface of materials, the fatigue cracks usually initiation from material surfaces and propagate into interior during cyclic loading. Therefore, the optimization of the microstructure and properties of material surface was beneficial to improving its service life. For this purpose, these novel surface modification approachs were developed to synthesize a gradient nanostructured (GNS) materials in recent years, referred to as surface self-nanocrystallization (SNC). With these SNC techniques, a thicker nanostructured layer with higher surface hardness, a large residual compressive stress and much smaller surface roughness can be achieved on the metallic surface.The surface of GNS materials was composed of nanograins, while the core remains coarse-grained structures, from the surface to the interior, the grain sizes gradually range from nanometer scale to micrometer scales, the special construction shape of GNS mate-rials was able to effectively enhance its fatigue resistance performance in both high-cycle and low-cycle regimes.
At present, the research on the mechanical properties, especially the fatigue properties, of gradient nanostructured materials has become research hot spot in this field, many engineering applications benefit from the research results in this field, however, at present, the research results on the field are defective summarized. Therefore, in this paper, the research progresses on the fatigue properties of gradient nanostructured materials in recent years is systematic summarized, and many factors that cause fatigue fracture of gradient nanostructured materials were analyzed, and perspectives and challenges on basic scientific understanding of fatigue properties of gradient nanostructured materials are addressed, which provides reference for the engineering application of gradient nanostructured materials in this field.
Key words:  gradient nanostructured materials    the bulk nanocrystalline metals    fatigue properties
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TG405  
作者简介:  付磊,四川轻化工大学副教授、硕士研究生导师。2007年3月毕业于昆明理工大学,获得工学硕士学位。现为四川大学空天科学与工程学院博士研究生,在王清远教授的指导下进行研究。目前主要研究领域为梯度纳米结构材料疲劳。
王清远,成都大学校长,教授,博士研究生导师。国家杰出青年基金获得者、长江学者与创新团队计划教育部创新团队带头人、新世纪百千万人才工程国家级人选、中科院引进海外杰出人才“百人计划”财政部择优支持人选、国务院政府特殊津贴专家、教育部新世纪优秀人才、工程力学国家精品课程负责人、四川省学术和技术带头人、四川省教学名师。现任破坏力学与防灾减灾四川省重点实验室主任、教育部能源工程安全与灾害力学重点实验室常务副主任、国务院学位委员会学科评议组成员、全国力学类专业教学指导委员会秘书长、中国力学学会理事、实验力学专委会副主任、中国材料研究学会疲劳分会理事、四川省力学学会副理事长、四川省土木建筑学会副理事长、成都市欧美同学会副会长。长期从事新型材料与结构力学问题、超长寿命疲劳与可靠性、实验力学、结构抗震、复合材料加固与耐久性、建筑垃圾再生利用及其低碳技术等方面的研究。承担和完成重点、杰青和重大科研仪器项目等国家自然科学基金项目8项,国内国际合作、教育部创新团队及其滚动支持项目等10余项。发表SCI收录论文200余篇,被他人引用2000余篇次,2014—2017连续四年入选Elsevier中国高被引学者。现任FFEMS等10个刊物编委。国际第六届超高周疲劳大会VHCF6主席。2006 年获教育部自然科学奖一等奖(第一完成人),2014年获四川省科技进步奖(自然科学类)一等奖(第一完成人),2018年获国家自然科学奖二等奖(第一完成人)。
引用本文:    
付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
FU Lei, LIN Li, LUO Yunrong, XIE Wenling, WANG Qingyuan, LI Hui. Progress in Fatigue Properties of Gradient Nanostructured Materials. Materials Reports, 2021, 35(3): 3114-3121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050196  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3114
1 Lu K.Acta Metallurgica Sinica,2015,25(1),1(in Chinese).卢柯. 金属学报,2015,25(1),1.2 Suresh S.Science,2001,292(5526),2447.3 Tao N R, Lu K.Acta Metallurgica Sinica,2014,50(2),141(in Chinese).陶乃镕,卢柯.金属学报,2014,50(2),141.4 Kou H, Lu J, Li Y.Advanced Materials,2014,26(31),5518.5 Hong C S, Tao N R, Huang X, et al.Acta Materialia,2010,58(8),3103.6 Wu X L, Tao N R, Hong Y S, et al.Acta Materialia,2002,50(8),2075.7 Lu K, Lu J.Journal of Materials Science & Technology,1999,15(3),193.8 Lu K, Lu J. Materials Science and Engineering A,2004,375-377(1),38.9 Lu J.Science,2014,345(6203),1455.10 Liu X C, Zhang H W, Lu K.Scripta Materialia,2015,95(1),54.11 Li W L, Tao N R, Lu K.Scripta Materialia,2008,59(5),546.12 Fang T H, Li W L, Tao N R, et al.Science,2011,331(6024),1587.13 Roland T, Retraint D, Lu K, et al.Scripta Materialia,2006,54(11),1949.14 Tao N R, Wang Z B, Lu K.Acta Materialia,2002,50(18),4603.15 Huang H W.Preparation and fatigue mechanism of gradient nano-structured (GNS) stainless steel. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2014(in Chinese).黄海威. 梯度纳米结构不锈钢材料的制备及疲劳机制研究.博士学位论文,中国科学院大学,2014.16 Aviles R, Albizuri J, Rodríguez A, et al.International Journal of Fatigue,2013,55,230.17 Dai K, Shaw L.Materials Science and Engineering A,2007,463(1),46.18 Ortiz A L, Tian J W, Liaw P K.Scripta Materialia,2010,62(3),129.19 Wang H T, Tao N R, Lu K.Scripta Materialia,2013,68(1),22.20 Yang L, Tao N R, Lu K, et al.Scripta Materialia,2013,68(10),801.21 Zhu K Y, Vassel A, Lu J.Acta Materialia,2004,52(14),4101.22 Segal V M.Materials Science and Engineering A,1995,197(2),157.23 Bridgman P W.Journal of Applied Physics,1943,15,273.24 Yan F K, Liu G Z, Tao N R, et al.Acta Materialia,2012,60(3),1059.25 Huang H W, Wang Z B, Lu J, et al.Acta Materialia,2015,87,150.26 Wang Q, Sun Q Y, Xiao L, et al.Journal of Materials Engineering and Performance,2016,25(1),241.27 Zhang K, Wang Z B, Lu K.Materials Research Letters,2016,5(4),258.28 Curtis S, de los Rios E R, Rodopoulos C A, et al.International Journal of Fatigue,2003,25(1),59.29 Luong H, Hill M R.Materials Science and Engineering A,2010,527(3),699.30 Pandey V, Chattopadhyay K, Santhi Srinivas N C, et al.Procedia Structural Integrity,2016,2,3288.31 Pandey V, Chattopadhyay K, Santhi Srinivas N C, et al.International Journal of Fatigue,2017,103,426.32 Chattopadhyay K, Pandey V, Santhi Srinivas N C, et al.Materials Science and Engineering,2014,63,1.33 Abood A N, Saleh A H, Salem R K, et al.Journal of Materials Science Research,2013,2(1),113.34 Feng Y P, Zhao S C, Xie J J, et al.Materials Science Forum,2013,745-746,387.35 Huang H W, Wang Z B, Yong X P, et al.Materials Science and Techno-logy,2013,29(10),1200.36 Wang Q.Uniaixal and biaxial fatigue behavior and deformation mechanism in gradient nanostructured pure titanium. Ph.D. Thesis, Xi'an Jiaotong University, China,2016(in Chinese).王启. 梯度纳米结构纯钛单/双轴疲劳行为及变形机理.博士学位论文,西安交通大学,2016.37 Wang Q, Sun Q Y, Xiao L, et al.Materials Science & Engineering A,2016,649,359.38 Villegas J C, Shaw L L, Dai K, et al.Philosophical Magazine Letters,2005,85(8),427.39 Dai K, Shaw L.International Journal of Fatigue,2008,30(8),1398.40 Zhao S C, Xie J J, Wu X L.Scientia Sinica Physica, Mechanica & Astronomica,2014,44(7),737(in Chinese).赵思聪,谢季佳,武晓雷.中国科学:物理学力学,2014,44(7),737.41 Zhao S C.The fatigue and mechanism of components with strength gra-dient surface layer. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2014(in Chinese).赵思聪. 具有强度梯度表层构件的疲劳性能及微观机理研究.博士学位论文,中国科学院大学,2014.42 Tanaka K, Mura T.Journal of Applied Mechanics,1981,48(1),97.43 Xie J J.Journal of Aeronautical Materials,2017,37(6),41(in Chinese).谢季佳. 航空材料学报,2017,37(6),41.44 Zhang S J.Investigations on fatigue behavior of S38C axle steel with its surface layer of gradient microstructure. Ph.D. Thesis, University of Chinese Academy of Sciences, China,2017(in Chinese).张诗佳. 具有表层梯度微结构S38C车轴钢的疲劳行为研究.博士学位论文,中国科学院大学,2017.45 Zhang S J, Xie J J, Jiang Q Q, et al.Materials Science & Engineering A,2017,700,66.46 Suresh S.Fatigue of material,Cambridge University Press,New York,1991.47 Vinogradov A, Nagasaki S, Kawazoe M.Nanostructured Materials,1999,11(7),925.48 Mughrabi H, Höppel H W, Kautz M.Scripta Materialia,2004,51(8),807.49 Hanlon T, Kwon Y N, Suresh S.Scripta Materialia,2003,49(7),675.50 Zhang Z J, Zhang P, Zhang Z F.Acta Materialia,2012,60(6-7),3113.51 Liu X C, Zhang H W, Lu K.Scripta Materialia,2015,95(1),54.52 Shaw L L, Tian J W, Ortiz A L, et al.Materials Science and Engineering A,2010,527(4-5),986.53 Wang Q Y, Berard J Y, Rathery S, et al.Fatigue & Fracture of Engineering Materials & Structures,2003,22(8),673.
[1] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[2] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[3] 丁文有, 何晓聪, 刘佳沐, 刘洋. 预腐蚀对夹层结构自冲铆接头疲劳特性的影响[J]. 材料导报, 2019, 33(18): 3089-3095.
[4] 黎国猛, 梁益龙, 范航京, 张雄菲, 朱勇. 水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J]. 材料导报, 2019, 33(18): 3107-3112.
[5] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[6] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[7] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[8] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[9] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[10] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[11] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed