Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 150-154    https://doi.org/10.11896/j.issn.1005-023X.2017.018.030
  计算模拟 |
碳纤维复合材料假脚冲击后疲劳性能影响因素分析*
崔海坡, 张梦雪, 张阿龙
上海理工大学教育部微创医疗器械工程中心,上海 200093
Influencing Factors Analysis for Fatigue Property of Carbon Fiber Composites Prosthetic Foot after Impact
CUI Haipo, ZHANG Mengxue, ZHANG Along
Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai 200093
下载:  全 文 ( PDF ) ( 1593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于三维逐渐损伤理论和有限元法,对碳纤维复合材料假脚在冲击载荷及冲击后疲劳载荷作用下的破坏过程进行分析,研究了不同冲击能量、不同冲头材料、不同应力水平等因素对碳纤维假脚的冲击损伤及疲劳性能的影响规律。结果表明,在冲击载荷作用下,碳纤维复合材料假脚的损伤模式主要为基体开裂、纤维压缩和分层。随着冲击能量的增加,上述3种破坏模式的损伤单元数逐渐增大;尽管随着冲击能量的增加,碳纤维复合材料假脚的疲劳循环次数逐渐降低,但二者之间并不满足线性关系,即存在冲击能门槛值。对于碳纤维复合材料假脚而言,其冲击能门槛值为7 J;冲头材料越硬,碳纤维复合材料结构件的冲击损伤面积越大,疲劳性能下降越剧烈;碳纤维复合材料假脚的疲劳循环次数随着加载应力的增加而显著降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔海坡
张梦雪
张阿龙
关键词:  假脚  碳纤维复合材料  疲劳性能  冲击损伤    
Abstract: The damage process of carbon fiber composites prosthetic foot under the impact loading and fatigue loading after impact were analyzed based on the 3D progressive damage theory and finite element method. The influence of impact energy, impact tup material and stress level on the impact damage and fatigue property of prosthetic foot were researched. The results showed that the main damage modes of carbon fiber composites prosthetic foot under the impact loading were matrix cracking, fiber crushing and delamination. The damage area of these damage modes increased with the increasing impact energy. Although the fatigue life cycle gradually decreased with the increasing impact energy, there was no linear relationship between them, which meant that there was a impact energy threshold. For carbon fiber composites prosthetic foot, the threshold was 7 J. With the enhancement of the hardness of impact tup, the impact damage area increased and fatigue property decreased wildly. The fatigue life cycle of carbon fiber compo-sites prosthetic foot decreased rapidly with the increasing stress level.
Key words:  prosthetic foot    carbon fiber composites    fatigue property    impact damage
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51305268);上海工程技术研究中心资助项目(15DZ2251700)
作者简介:  崔海坡:男,1978年生,博士,副教授,主要研究方向为材料设计、分析与应用 E-mail:h_b_cui@163.com
引用本文:    
崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
CUI Haipo, ZHANG Mengxue, ZHANG Along. Influencing Factors Analysis for Fatigue Property of Carbon Fiber Composites Prosthetic Foot after Impact. Materials Reports, 2017, 31(18): 150-154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.030  或          http://www.mater-rep.com/CN/Y2017/V31/I18/150
1 Liu Jinsong, Liu Zhiquan. Application of modern polymer materials in the area of prosthetics and orthotics[J]. Chinese J Rehabilitation Theory Practice, 2004,10(10):634(in Chinese).
刘劲松, 刘志泉. 现代高分子材料在假肢矫形技术领域中的应用[J]. 中国康复理论与实践, 2004,10(10):634.
2 Rikard B, Nilsson L, Simonsson K, et al. Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model[J]. Compos Sci Technol, 2011,64(2):279.
3 Schmidt F, Rheinfurth M, Protz R, et al. Monitoring of multiaxial fatigue damage evolution in impacted composite tubes using non-destructive evaluation[J]. Composites: Part A, 2012,43:537.
4 Shi W J, Hu W P, Zhang M, et al. A damage mechanics model for fatigue life prediction of fiber reinforced polymer composite lamina[J]. Acta Mechanica Solida Sinica, 2011,5(24):399.
5 Zhu Weiyao, Xu Xiwu. Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage[J]. Acta Materiae Compositae Sinica, 2012,29(5):171(in Chinese).
朱炜垚, 许希武. 含低速冲击损伤复合材料层合板剩余压缩强度及疲劳性能试验研究[J]. 复合材料学报, 2012,29(5):171.
6 Koo J M, Choi J H, Seok C S. Evaluation for residual strength and fatigue characteristics after impact in CFRP composites[J]. Compo-site Structures, 2013,105:58.
7 Koo J M, Choi J H, Seok C S. Prediction of post-impact residual strength and fatigue characteristics after impact of CFRP composite structures[J]. Composites: Part B, 2014,61:300.
8 Uyaner M, Kara M, Sahin A. Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact[J]. Composites: Part B, 2014,61:358.
9 Tarpani J R, Canto R B, Saracura R G M, et al. Compression after impact and fatigue of reconsolidated fiber-reinforced thermoplastic matrix solid composite laminate[J]. Procedia Mater Sci, 2014,3:485.
10崔海坡, 赵改平, 黄晶晶, 等. 碳纤维双弹全地形假脚脚板. 中国, 200810200227.5[P]. 2011-11-09.
11Hou J P, Petrinic N, Ruiz C, et al. Prediction of impact damage in composite plates[J]. Compos Sci Technol, 2000,60:273.
12Tserpes K I, Labeas G, Papanikos P, et al. Stength prediction of bolted joints in graphite/epoxy composite laminates[J]. Compo-sites: Part B, 2002,33:521.
13Shokrieh M M, Lessard L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—Ⅰ: Modelling[J]. Int J Fatigue, 1997,19(3):201.
14Shokrieh M M, Lessard L B. Progressive fatigue damage modeling of composite materials, Part Ⅰ: Modeling[J]. J Compos Mater,2000,34(13):1056.
[1] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[2] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[3] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[4] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[5] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[6] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[7] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[8] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed