Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20001-20004    https://doi.org/10.11896/cldb.20080236
  无机非金属及其复合材料 |
氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能
于濂清1, 杨钱龙1, 朱海丰2, 段丽杰1, 赵兴雨1, 王艳坤1
1 中国石油大学(华东)材料科学与工程学院,青岛 266580
2 中国石油大学(华东)理学院,青岛 266580
Photoelectrochemical Properties of Hydrogen Reduced TiO2 Film by HF Corrosion
YU Lianqing1, YANG Qianlong1, ZHU Haifeng2, DUAN Lijie1, ZHAO Xingyu1, WANG Yankun1
1 College of Material Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 College of Science,China University of Petroleum (East China), Qingdao 266580, China
下载:  全 文 ( PDF ) ( 5520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiO2是一种价格低廉、稳定的半导体材料,被广泛应用于光催化水裂解、污水处理等众多领域,但其只能吸收高能量的紫外光,限制了实际应用。本工作采用氢氟酸溶液刻蚀纯钛片,然后在一系列温度下对其进行热处理,使其表面与氧气反应生成TiO2薄膜,随后将样品置于氢气气氛下进行还原处理。通过XRD对其进行物相表征,SEM观察微观形貌,利用电化学工作站测试样品的光响应曲线、线性扫描伏安曲线以及电化学阻抗谱,并根据线性扫描伏安曲线计算出样品的光转换效率。结果表明,经过HF处理后,所形成的TiO2纳米薄膜暴露(101)晶面。同时,经过HF处理和氢气还原制备的样品的光电性能有了较大提升,光电流密度最高可达1.04 mA/cm2,是未经HF处理和氢气还原薄膜的11.5倍,是仅经HF处理薄膜的2.97倍,最大光转换效率提升了70%。该方法制备的纳米薄膜材料在光催化降解、产氢等领域具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于濂清
杨钱龙
朱海丰
段丽杰
赵兴雨
王艳坤
关键词:  二氧化钛  氢氟酸处理  氢气还原  光电化学性能    
Abstract: TiO2 is a low cost and stable semiconductor. It is widely studied in photocatalytic water splitting, waste-water treatment and so on. However, it can only absorb ultraviolet light limiting its practical application. HF solution was used to etch titanium sheet. Afterwards, TiO2 nano-film were reduced in H2 atmosphere under high temperature. The TiO2 nano-film were tested by XRD, SEM and electrochemical workstation to obtain phase composition, microstructures and photo-response current, linear sweep voltammetry curve, electrochemical impedance spectra, respectively. The results show that TiO2 nano-film exposes more rutile (101) facet through HF treatment. And the photoelectrochemical properties apparently promote after H2 treatment, the photocurrent density is up to 1.04 mA/cm2. It is 11.5 times higher than that of pure nano-film, and 2.97 times higher than that of without H2 reduction. Meanwhile, the maximum photoconversion efficiency reached 70% improvement.
Key words:  TiO2    HF treatment    H2 reduction    photoelectrochemical properties
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  O643.36  
  O644.1  
基金资助: 山东省自然科学基金(ZR2020ME010)
通讯作者:  iyy2000@163.com   
作者简介:  于濂清,中国石油大学(华东)教授,博士生导师,2007年毕业于浙江大学材料系,主持承担国家自然科学基金项目2项,山东省自然科学基金2项,青岛市科技发展计划2项,获浙江省科技进步一等奖,青岛市技术发明二等奖,获青岛市青年科技奖等称号。主要从事稀土永磁钕铁硼材料、光电化学催化材料研究开发。在Nanoscale,Sensors & actuator B:Chemical等杂志发表论文80余篇,授权国家发明专利23项。
引用本文:    
于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
YU Lianqing, YANG Qianlong, ZHU Haifeng, DUAN Lijie, ZHAO Xingyu, WANG Yankun. Photoelectrochemical Properties of Hydrogen Reduced TiO2 Film by HF Corrosion. Materials Reports, 2021, 35(20): 20001-20004.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080236  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20001
1 David P, Rodrigue G, Wang T, et al. BioScience,1994,44(8),536.
2 Mathews Nripan, Varghese Binni, Sun Cheng, et al. Nanoscale,2010,2(10),1984.
3 Guo Honghui, Zhou Jianzhang, Lin Zhonghua. Electrochemistry Communications,2008,10(1),146.
4 Liao L, Lu H B, Li J C, et al. The Journal of Physical Chemistry C,2007,111(5),1900.
5 Liu Jinping, Li Yuanyuan, Fan Hongjin, et al. Chemistry of Materials,2010,22(1),212.
6 Fujishima Akira, Honda Kenichi. Nature,1972,238(5358),37.
7 Wang Gongming, Wang Hanyu, Ling Yichuan, et al. Nano Letters,2011,11(7),3026.
8 Liu Lei, Chen Xiaobo. Chemical Reviews,2014,114(19),9890.
9 Li Sheng, Qiu Jingxia, Ling Min, et al. ACS Applied Materials & Interfaces,2013,5(21),11129.
10 Lee J, Christopher O M, Warren S C, et al. Nature Materials,2008,7,222.
11 Yu Lianqing, Zhi Qianqian, Huang Chengxing, et al. Journal of Nanoscience and Nanotechnology,2015,15(9),6576.
12 Martra Gianmario. Applied Catalysis A: General,2000,200(1),275.
13 Li Guisheng, Wu Ling, Li Fang, et al. Nanoscale,2013,5(5),2118.
14 Zhang Yaping, Zhu Haifeng, Yu Lianqing,et al. Materials Research Express,2018,5(4),045014.
15 Yu Lianqing, He Jiandong, Huang Chengxing, et al. RSC Advances,2017,7(86),54485.
16 Yu Lianqing, Li Ming, Huang Chengxing,et al. Materials Letters,2018,216,239.
17 Chen Xiaobo, Liu Lei, Yu Peter, et al. Science,2011,331(6018),746.
18 Gong D, Grimes C A, Varghese O K, et al. Journal of Materials Research,2001,16(12),3331.
19 Paulose M, Shankar K, Yoriya S, et al. Journal of Physical Chemistry B,2006,110(33),16179.
20 Tae Woo Kim, Kyoung-Shin Choi. Science,2014,343(6174),990.
21 Zhang Wenhua, Yang Jinlong, Luo Yi, et al. Journal of Chemical Phy-sics,2008,129(6),064703.
22 Schladt T D, Graf T, Aetukuri N B,et al. ACS Nano,2013,7(9),8074.
[1] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[2] 刘明浩, 宋武林, 卢照, 李明辉. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114.
[3] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[4] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[5] 李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
[6] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[7] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[8] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[9] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[10] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[11] 林思宇, 曾春梅. 助催化剂NiCoP修饰改性增强半导体TiO2的光催化性能[J]. 材料导报, 2019, 33(24): 4046-4050.
[12] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[13] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[14] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[15] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed