Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9108-9114    https://doi.org/10.11896/cldb.19120126
  无机非金属及其复合材料 |
纳米二氧化钛固相载体研究进展
刘明浩1, 宋武林1,2,*, 卢照1,2, 李明辉1,2
1 华中科技大学材料科学与工程学院,武汉 430074
2 华中科技大学分析测试中心,武汉 430074
Research Progress of the Nano Titanium Dioxide Solid Support
LIU Minghao1, SONG Wulin1,2,*, LU Zhao1,2, LI Minghui1,2
1 College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 7928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,随着工业化社会的快速发展,由有机物引发的环境污染问题日益严重,而常用的有机物处理技术无法满足实际的应用需求,因此,需要开发更加高效、先进的有机物处理技术。纳米二氧化钛有良好的光催化降解有机物的能力,在光照作用下,可将有机物完全降解为对环境无污染的CO2和H2O,有着广阔的应用前景。在实际应用中,纳米二氧化钛存在比表面积大、易团聚的问题,会使其光催化活性降低。而且纳米粉体形式的二氧化钛存储、运输和使用困难,回收利用成本高,二氧化钛的损耗量大。但将二氧化钛负载于固相载体上,可以很好地解决这些问题,有利于促进纳米二氧化钛光催化剂商业化的推广和应用。本文综述了纳米二氧化钛固相载体的研究进展,系统介绍了负载纳米二氧化钛常用的固相载体和负载方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘明浩
宋武林
卢照
李明辉
关键词:  纳米二氧化钛  固相载体  负载方法    
Abstract: Today, with the rapid development of industrialized society, the environmental pollution caused by organics is becoming increasingly serious. The traditional organic treatment technologies cannot meet actual needs, thus it is necessary to develop some more efficient,and advanced technologies. Nano-titanium dioxide can degrade organics into CO2 and H2O by means of light, has a promising prospect. nano-titanium dioxide usually has a large specific surface area and is easy to agglomerate, finally resulting a decrease in its activity. And the nano powder titanium dioxideis also difficult to storage, transport and use, which will increase the recycling cost and mass loss. However, nano-titaniun dioxide fixed in solid support will easily resolve that problems, thus contributing to the promotion and application in business. This article summarizes some research progresses on solid support of nano-titanium dioxide, and systematically introduces the common solid supports and methods to load titanium dio-xide.
Key words:  nanometer titanium dioxide    solid support    load method
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(51071073)
通讯作者:  wulins@hust.edu.cn   
作者简介:  刘明浩,男,硕士研究生,就读于华中科技大学材料科学与工程学院,目前主要研究纳米二氧化钛固相负载。
宋武林,男,华中科技大学材料科学与工程学院教授、博士研究生导师。华中科技大学分析测试中心副主任,现任中国材料研究学会理事,湖北省理化检验学会副理事长,中国分析测试协会理事,湖北省电镜学会常务理事。研究方向为:纳米材料制备与应用、材料表面处理、材料激光表面改性、新型模具材料、材料分析测试等。
引用本文:    
刘明浩, 宋武林, 卢照, 李明辉. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114.
LIU Minghao, SONG Wulin, LU Zhao, LI Minghui. Research Progress of the Nano Titanium Dioxide Solid Support. Materials Reports, 2021, 35(9): 9108-9114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120126  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9108
1 Kasanen J, Suvanto M, Pakkanen T T. Journal of Applied Polymer Science,2011,119(4),2235.
2 Carp O. Progress in Solid State Chemistry,2004,32(1-2),33.
3 Pan J, Liu G, Lu G Q M, et al. Angewandte Chemie International Edition,2011,50(9),2133.
4 Rauf M A, Meetani M A, Hisaindee S. Desalination,2011,276(1-3),13.
5 Houas A, Lachheb H, Ksibi M, et al. Applied Catalysis B: Environmental,2001,31(2),145.
6 Özkan A, Özkan M H, Gürkan R, et al. Journal of Photochemistry and Photobiology A: Chemistry,2004,163(1-2),29.
7 Tomkiewicz M. Catalysis Today,2000,58(2),115.
8 Krysa J, Waldner G, Měšt ánková H, et al. Applied Catalysis B: Environmental,2006,64(3-4),290.
9 Byrne J A, Eggins B R, Brown N M D, et al. Applied Catalysis B: Environmental,1998,17(1-2),25.
10 Sriwong C, Wongnawa S, Patarapaiboolchai O. Catalysis Communications,2008,9(2),213.
11 Han H, Bai R. Industrial & Engineering Chemistry Research,2009,48(6),2891.
12 Li Puma G, Bono A, Krishnaiah D, et al. Journal of Hazardous Mate-rials,2008,157(2-3),209.
13 Shan A Y, Ghazi T I M, Rashid S A. Applied Catalysis A: General,2010,389(1-2),1.
14 Zhang X, Lei L. Journal of Hazardous Materials,2008,153(1-2),827.
15 Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, et al. Carbon,2014,67,104.
16 Liu R F, Li W B, Peng A Y. Applied Surface Science,2018,427,608.
17 Gar Alalm M, Tawfik A, Ookawara S. Journal of Environmental Chemical Engineering,2016,4(2),1929.
18 Jin P, Chang R, Liu D, et al. Journal of Environmental Chemical Engineering,2014,2(2),1040.
19 Yuan L, Huang D, Guo W, et al. Applied Clay Science,2011,53(2),272.
20 Wang C, Shi H, Zhang P, et al. Applied Clay Science,2011,53(4),646.
21 Li F F, Jiang Y S, Yu L X, et al. Applied Surface Science,2005,252(5),1410.
22 Sun Q, Li H, Zheng S, et al. Applied Surface Science,2014,311,369.
23 Chen D, Zhu Q, Zhou F, et al. Journal of Hazardous Materials,2012,235-236,186.
24 Singh S, Mahalingam H, Singh P K. Applied Catalysis A: General,2013,462-463,178.
25 Magalhães F, Moura F C C, Lago R M. Desalination.2011,276(1-3),266.
26 Fabiyi M E, Skelton R L. Journal of Photochemistry and Photobiology A: Chemistry,2000,132(1),121.
27 El-Rehim H A A, Hegazy E S A, Diaa D A. Reactive & Functional Polymers,2012,72(11),823.
28 Yu C L, Wu R X, Fu Y H, et al Advanced Materials Research,2012,356-360,524.
29 Sung Y, Lee Y, Lee S. Journal of Crystal Growth,2004,267(1-2),312.
30 Fostier A H, Pereira M D S S, Rath S, et al. Chemosphere,2008,72(2),319.
31 Khataee A R, Pons M N, Zahraa O. Journal of Hazardous Materials,2009,168(1),451.
32 Kim S, Lee D. Microchemical Journal,2005,80(2),227.
33 Yan J, Du S G, Wang M Q, et al. Journal of Functional Materials,2014,45(2),2124.
34 Kim S C, Lee D K. Microchemical Journal,2005,80(2),227.
35 Espino-Estévez M R, Fernández-Rodríguez C, González-Díaz O M, et al. Chemical Engineering Journal,2015,279,488.
36 Wang X F, Peng D C, Ban Y X. Chinese Journal of Environmental Engineering,2012,6(7),2309(in Chinese).
王西峰,彭党聪,班云霄.环境工程学报,2012,6(7),2309.
37 Yan J, Du S G, Wang M Q, et al. Journal of Functional Materials,2014,45(2),124(in Chinese).
闫军,杜仕国,汪明球,等.功能材料,2014,45(2),124.
38 Zheng A, Fan Z, Li B, et al. Nano Reports,2015,1(1),24.
39 Zan L, Fa W, Peng T, et al. Journal of Photochemistry and Photobiology B: Biology,2007,86(2),165.
40 Yong F Z, Li W, He Y, et al. Chemical Journal of Chinese universities,2003(3),465(in Chinese).
朱永法,李巍,何俣,等.高等学校化学学报,2003(3),465.
41 Kuo W S. Journal of Environmental Science and Health, Part A,2000,35(3),419.
42 Hu H, Xiao W, Yuan J, et al. Journal of Environmental Sciences,2015,19(1),80.
43 Sun P, Xue R, Zhang W, et al. Catalysis Today,2016,274,2.
44 Lee J A, Krogman K C, Ma M, et al. Advanced Materials,2009,21(12),1252.
45 Li Y, Wang C. Acta Petrologica Et Mineralogica,2011,30(2),286(in Chinese).
李艳,王程.岩石矿物学杂志,2011,30(2),286.
46 Jamil T S, Ghaly M Y, Fathy N A, et al. Separation and Purification Technology,2012,98,270.
47 Magalhães F, Lago R M. Solar Energy,2009,83(9),1521.
48 Lei P, Wang F, Gao X, et al. Journal of Hazardous Materials,2012,227-228,185.
49 Han H, Bai R. Separation and Purification Technology,2010,73(2),142.
50 Zhang G X, Dong X B, Zheng S L. Journal of Inogranic Materials,2016,31(4),407(in Chinese).
张广心,董雄波,郑水林.无机材料学报,2016,31(4),407.
51 Zhang X, Lei L. Journal of Hazardous Materials,2008,153(1-2),827.
52 Deleon R L, Joshi M P, Rexer E F, et al. Applied Surface Science,1998,127-129,321.
53 Xiao Q F, Zhao L, Zhang J M, et al. Journal of Zhengzhou University(Naure Science Edition),2007,39(2),179(in Chinese).
肖庆锋,赵蕾,张建民,等.郑州大学学报(理学版),2007,39(2),179.
54 Matsuoka M, Anpo M. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2003,3(3),225.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 郭韵恬, 王汉青. 稀土镧掺杂纳米二氧化钛复合保鲜包装薄膜的研究[J]. 材料导报, 2018, 32(24): 4357-4362.
[3] 林彬, 陈国需, 粟斌, 徐万里. 纳米二氧化钛亲油化改性及其摩擦学性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 69-73.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed