Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9115-9122    https://doi.org/10.11896/cldb.19120150
  无机非金属及其复合材料 |
石墨烯/硅肖特基结太阳能电池的研究进展
刘家森1, 陈秀华1,*, 李绍元2, 马文会2, 李毅1, 胡焕然1, 马壮1
1 云南大学材料科学与工程学院,昆明 650091
2 昆明理工大学冶金与能源工程学院,真空冶金国家工程实验室,昆明 650093
Research Progress of Graphene/Silicon Schottky Junction Solar Cells
LIU Jiasen1, CHEN Xiuhua1,*, LI Shaoyuan2, MA Wenhui2, LI Yi1, HU Huanran1, MA Zhuang1
1 College of Materials Science and Engineering, Yunnan University, Kunming 650091, China
2 National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 5889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能电池利用光伏效应直接将光能转变成电能,能有效地解决未来能源危机和环境污染,符合可持续发展的理念。传统的硅基太阳能电池存在需要高温过程,工艺复杂,发电成本无法与火电和水电相抗衡等问题。针对上述问题,近年来研究人员开发了诸多新型太阳能电池以降低制造成本,其中采用石墨烯作为透明电极的石墨烯/硅肖特基结太阳能电池被认为是新一代低成本、高效率的太阳能电池。
然而,石墨烯功函数较低、方阻较高,载流子沿界面复合严重,并且平面硅反射率较高,导致石墨烯/硅肖特基结太阳能电池的效率远低于传统硅基太阳能电池。因此,近年来,主要研究重点在石墨烯掺杂改性、抑制界面处的载流子复合和降低器件的反射率等方面。目前,石墨烯/硅肖特基结太阳能电池的光电转换效率(PCE)已由1.65%提升到16.61%。
目前,成功应用于提升器件性能的石墨烯掺杂剂主要有HNO3、金属纳米粒子和双(三氟甲磺酰基)酰胺(TFSA)等。其中,HNO3应用最为广泛,但其稳定性较差,采用金属纳米粒子等物理掺杂可以同时提升器件的PCE和稳定性。在石墨烯和硅之间引入Al2O3、MoS2、量子点等界面层和表面钝化,可以有效地减少硅表面的悬空键,抑制载流子复合,从而提高器件的性能。此外,研究人员通过在石墨烯表面引入TiO2、PMMA、MgF2/ZnS等减反射膜,或在硅表面引入纳米线、多孔硅等微结构,来降低器件的反射率,提高其对光的利用率。
本文总结了近年来石墨烯/硅太阳能电池的研究进展,简要介绍了器件的结构和原理,重点介绍了石墨烯掺杂、石墨烯层数选择、硅的纳米或微米结构、减反射膜和界面优化等手段,分析了目前石墨烯/硅肖特基结太阳能电池商业化所面临的问题并对其提出展望,以期为制备效率高和稳定性强的新型石墨烯/硅肖特基结太阳能电池提供一定参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘家森
陈秀华
李绍元
马文会
李毅
胡焕然
马壮
关键词:  石墨烯    肖特基结  太阳能电池  界面层    
Abstract: Solar cells directly convert light energy into electricity by photovoltaic effect, which can effectively solve future energy crisis and environmental pollution, and conform to the concept of sustainable development. Traditional silicon-based solar cells need high-temperature process, which is complex, and the cost of power generation can not compete with thermal power and hydropower. In order to solve these problems, researchers have developed many novel solar cells in recent years to reduce the manufacturing cost. Among them, graphene/silicon Schottky junction solar cells with graphene as transparent electrode are considered as a new generation of low-cost and high-efficiency solar cells.
However, the efficiency of graphene/silicon Schottky junction solar cells are much lower than that of traditional silicon-based solar cells due to its low work function, high sheet resistance, serious recombination of charge carriers along the interface, and high plane silicon reflectivity. Therefore, in recent years, the main research focuses on the graphene doping modification, suppressing carrier recombination at the interface and the reduction of reflectivity of devices. At present, the photoelectric conversion efficiency (PCE) of graphene/silicon Schottky junction solar cells has increased from 1.65% to 16.61%.
At present, the successful application of graphene dopants to improve the performance of devices mainly includes HNO3, metal nanoparticles, bis(trifluoromethanesulfonyl)-amide(TFSA) and so on. Among them, HNO3 is the most widely used, but its stability is poor. Physical doping such as metal nanoparticles can simultaneously improve the PCE and stability of the device. The introduction of Al2O3, MoS2, quantum dots and other interface layers and surface passivation between graphene and silicon can effectively reduce the suspended bonds on the silicon surface and inhibit carrier recombination, so as to improve the performance of devices. In addition, by introducing antireflective films such as TiO2, PMMA, MgF2/ZnS on the surface of graphene, or introducing microstructures such as nanowires and porous silicon on the surface of silicon, the researchers can reduce the reflectivity of the device and improve the utilization of light.
In this paper, the research progress of graphene/silicon solar cells in recent years is summarized, and the structure and principle of the device are briefly introduced, with emphasis on graphene doping, graphene layer selection, nano or micro structure of silicon, antireflection film and interface optimization. The problems and prospects of commercialization of graphene/silicon Schottky junction solar cells are analyzed, in order to provide some reference for the preparation of novel graphene/silicon Schottky junction solar cells with high efficiency and strong stability.
Key words:  graphene    silicon    Schottky junction    solar cells    interface layer
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(61764009;51762043;51974143);国家重点研发计划(2018YFC1901801;2018YFC1901805);云南省重大科技专项(2019ZE007);云南省自然科学基金重点项目(2018FA027)
通讯作者:  chenxh@ynu.edu.cn   
作者简介:  刘家森,2018年6月毕业于重庆交通大学材料科学与工程专业,获得工学学士学位。现为云南大学硕士研究生,在陈秀华教授的指导下进行研究。目前主要研究领域为石墨烯硅基太阳能电池。
陈秀华,云南大学材料科学与工程学院教授,博士研究生导师,2001年博士毕业于昆明理工大学资源开发系矿物加工工程专业,2002—2004年在日本东京大学材料工学从事集成电路布线互连层材料博士后研究工作。目前主要从事新能源环境材料、太阳能级硅电池材料等方面的研究开发工作。
引用本文:    
刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
LIU Jiasen, CHEN Xiuhua, LI Shaoyuan, MA Wenhui, LI Yi, HU Huanran, MA Zhuang. Research Progress of Graphene/Silicon Schottky Junction Solar Cells. Materials Reports, 2021, 35(9): 9115-9122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120150  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9115
1 Green M A. Energy Policy,2000,28(14),989.
2 Shanmugam M, Durcan C A, Yu B. Nanoscale,2012,4(23),7399.
3 Ye Y, Dai L, Wu P C, et al. Nanotechnology,2009,20(37),375202.
4 Kim D W, Sung Y J, Park J W, et al. Thin Solid Films,2001,398,87.
5 Stoica T F, Stoica T A, Vanca V, et al. Thin Solid Films,1999,348,273.
6 Liu C Y, Kortshagen U R. Nanoscale Research Letters,2010,5(8),1253.
7 Tang J, Wang X, Brzozowski L, et al. Advanced Materials,2010,22(12),1398.
8 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
9 Partoens B, Peeters F M. Physical Review B,2006,74(7),075404.
10 Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446(7131), 60.
11 Sheehy D E, Schmalian J. Physical Review B,2009,80(19),193411.
12 Kuzmenko A B, Van Heumen E, Carbone F, et al. Physical Review Letters,2008,100(11),117401.
13 Morozov S V, Novoselov K S, Katsnelson M I, et al. Physical Review Letters,2008,100(1),016602.
14 Mayorov A S, Gorbachev R V, Morozov S V, et al. Nano Letters,2011,11(6),2396.
15 Scarpa F, Adhikari S, Phani A S. Nanotechnology,2009,20(6),065709.
16 Suk J W, Piner R D, An J, et al. ACS Nano,2010,4(11),6557.
17 Yin Z, Sun S, Salim T, et al. ACS Nano,2010,4(9),5263.
18 Wang X, Zhi L, Müllen K. Nano Letters,2008,8(1),323.
19 Xia F, Mueller T, Lin Y, et al. Nature Nanotechnology,2009,4(12),839.
20 Furchi M, Urich A, Pospischil A, et al. Nano Letters,2012,12(6),2773.
21 Wu J, Agrawal M, Becerril H A, et al. ACS Nano,2009,4(1),43.
22 Han T H, Lee Y, Choi M R, et al. Nature Photonics,2012,6(2),105.
23 Li X, Cai W, An J, et al. Science,2009,324(5932),1312.
24 Wang X, You H, Liu F, et al. Chemical Vapor Deposition,2009,15,53.
25 Muñoz R, Gómez-Aleixandre C. Chemical Vapor Deposition,2013,19,297.
26 Li X, Zhu H, Wang K, et al. Advanced Materials,2010,22(25),2743.
27 Shin D H, Kwak G Y, Kim J M, et al. Journal of Alloys and Compounds,2019,773,913.
28 Shi E, Zhang L, Li Z, et al. Scientific Reports,2012,2,884.
29 Choi Y, Lee J, Seo J, et al. Journal of Materials Chemistry A,2017,5(35),18716.
30 Liu H, Liu Y, Zhu D. Journal of Materials Chemistry,2011,21(10),3335.
31 Gierz I, Riedl C, Starke U, et al. Nano Letters,2008,8(12),4603.
32 Han M, Ryu B D, Hyung J H, et al. Materials Science in Semiconductor Processing,2017,59,45.
33 Chen S, Xu Y, Li C, et al. Solar Energy,2018,174,66.
34 Guo H A, Jou S, Mao T Z, et al. Applied Surface Science,2019,464,125.
35 Huang K, Yan Y, Yu X, et al. Nano Energy,2017,32,225.
36 Liu X, Zhang X W, Meng J H, et al. Applied Physics Letters,2015,106(23),233901.
37 Liu X, Zhang X W, Yin Z G, et al. Applied Physics Letters,2014,105(18),183901.
38 Lancellotti L, Bobeico E, Castaldo A, et al. Thin Solid Films,2018,646,21.
39 Zhao J, Ma F J, Ding K, et al. Applied Surface Science,2018,434,102.
40 Yang L, Yu X, Hu W, et al. ACS Applied Materials & Interfaces,2015,7(7),4135.
41 Kim J M, Seo S W, Shin D H, et al. Current Applied Physics,2017,17(8),1136.
42 Shin D H, Jang C W, Lee H S, et al. Applied Surface Science,2018,433,181.
43 Cui T, Lv R, Huang Z H, et al. Journal of Materials Chemistry A,2013,1(18),5736.
44 Adhikari S, Biswas C, Doan M H, et al. ACS Applied Materials & Interfaces,2018,11(1),880.
45 Miao X, Tongay S, Petterson M K, et al. Nano Letters,2012,12(6),2745.
46 Shin D H, Kim J M, Jang C W, et al. Journal of Applied Physics,2018,123(12),123101.
47 Ho P H, Liou Y T, Chuang C H, et al. Advanced Materials,2015,27(10),1724.
48 Li Y F, Yang W, Tu Z Q, et al. Applied Physics Letters,2014,104(4),043903.
49 Ihm K, Lim J T, Lee K J, et al. Applied Physics Letters,2010,97(3),032113.
50 Lin Y, Li X, Xie D, et al. Energy & Environmental Science,2013,6(1),108.
51 Lin Y K, Hong Y T, Shyue J J, et al. Superlattices and Microstructures,2019,126,42.
52 Song T, Lee S T, Sun B. Nano Energy,2012,1(5),654.
53 Garnett E, Yang P. Nano Letters,2010,10(3),1082.
54 Fan G, Zhu H, Wang K, et al. ACS Applied Materials & Interfaces,2011,3(3),721.
55 Shin D H, Kim J H, Jung D H, et al. Journal of Alloys and Compounds,2019,803,958.
56 Shin D H, Kim J H, Kim J H, et al. Journal of Alloys and Compounds,2017,715,291.
57 Abdullah M F, Hashim A M. Materials Science in Semiconductor Proces-sing,2019,96,137.
58 Qiu J, Shang Y, Chen X, et al. Journal of Materials Science & Technology,2018,34(11),2197.
59 Lee W C, Tsai M L, Chen Y L, et al. Scientific Reports,2017,7,46478.
60 Luongo G, Grillo A, Giubileo F, et al. Nanomaterials,2019,9(5),659.
61 Shi E, Li H, Yang L, et al. Nano Letters,2013,13(4),1776.
62 Rehman M A, Roy S B, Akhtar I, et al. Carbon,2019,148,187.
63 Gan X, Lv R, Zhu H, et al. Journal of Materials Chemistry A,2016,4(36),13795.
64 Yavuz S, Kuru C, Choi D, et al. Nanoscale,2016,8(12),6473.
65 Bhopal M F, won Lee D, Rehman M A, et al. Materials Science in Semiconductor Processing,2018,86,146.
66 Wang F, Kozawa D, Miyauchi Y, et al. Nature Communications,2015,6,6305.
67 Yavuz S, Loran E M, Sarkar N, et al. ACS Applied Materials & Interfaces,2018,10(43),37181.
68 Ding K, Zhang X, Ning L, et al. Nano Energy,2018,46,257.
69 Lancellotti L, Bobeico E, Capasso A, et al. Solar Energy,2016,127,198.
70 Ding K, Zhang X, Xia F, et al. Journal of Materials Chemistry A,2017,5(1),285.
71 Alnuaimi A, Almansouri I, Saadat I, et al. Solar Energy,2018,164,174.
72 Rehman M A, Akhtar I, Choi W, et al. Carbon,2018,132,157.
73 Ahn J, Chou H, Banerjee S K. Journal of Applied Physics,2017,121(16),163105.
74 Bhopal M F, Akbar K, Rehman M A, et al. Carbon,2017,125,56.
75 Song Y, Li X, Mackin C, et al. Nano Letters,2015,15(3),2104.
76 Alnuaimi A, Almansouri I, Saadat I, et al. RSC Advances,2018,8(19),10593.
77 Xu D, Yu X, Gao D, et al. Journal of Materials Chemistry A,2016,4(27),10558.
78 Ma J, Bai H, Zhao W, et al. Solar Energy,2018,160,76.
79 Tsuboi Y, Wang F, Kozawa D, et al. Nanoscale,2015,7(34),14476.
80 Meng J H, Liu X, Zhang X W, et al. Nano Energy,2016,28,44.
81 Diao S, Zhang X, Shao Z, et al. Nano Energy,2017,31,359.
82 Kim J M, Kim S, Shin D H, et al. Nano Energy,2018,43,124.
83 Zhong M, Xu D, Yu X, et al. Nano Energy,2016,28,12.
84 Jiao K, Wang X, Wang Y, et al. Journal of Materials Chemistry C,2014,2(37),7715.
85 Jiao T, Wei D, Song X, et al. RSC Advances,2016,6(12),10175.
86 Xu D, He J, Yu X, et al. Advanced Electronic Materials,2017,3(3),1600516.
87 Xu D, Yu X, Gao D, et al. Journal of Materials Chemistry A,2016,4(29),11284.
88 Zhang X, Xie C, Jie J, et al. Journal of Materials Chemistry A,2013,1(22),6593.
89 Brus V V, Gluba M A, Zhang X, et al. Solar Energy,2014,107,74.
90 Maldonado S, Knapp D, Lewis N S. Journal of the American Chemical Society,2008,130(11),3300.
91 Bashouti M Y, Pietsch M, Brönstrup G, et al. Progress in Photovoltaics: Research and Applications,2014,22(10),1050.
92 Xie C, Zhang X, Wu Y, et al. Journal of Materials Chemistry A,2013,1(30),8567.
[1] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[2] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[3] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[4] 欧黎明, 毛丰, 乔永枫, 高梦锞, 吴修德, 魏世忠. 稀土元素Eu和冷却速率对Al-7Si合金中共晶硅的影响[J]. 材料导报, 2021, 35(8): 8103-8107.
[5] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[6] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[7] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[8] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[9] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[10] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[11] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[12] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[13] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[14] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[15] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed