Abstract: As a kind of green and environmental-friendly energy storage, lithium ion batteries (LIBs) are received widely used in many fields, such as mobile phone, laptop, camera, medical instrument and other portable electronic devices, even in new energy electric vehicle. Especially, with the progress of society and the development of human beings, depletion of energy resources, oil crisis and motor vehicle exhaust problems are increasingly serious day by day. The dramatic rise of new energy powered cars asserts requirement of LIBs, which is regarded as one of the most suitable energy devices. And the improvement of energy density of LIBs will be of great significance to the development of new energy po-wered cars. The electrode materials are typical factors that limit the energy density of LIBs. Currently, the commercialized anode for LIBs are graphite, which have a very limited theoretical capacity of 372 mAh/g. Among various new type promising anodes, silicon has reached considerable attention due to its ultrahigh theoretical capacity of 4 200 mAh/g. However, the low electronic conductivity, large volume expansion and unstable structure lead to the poor electrochemical performance of silicon anodes. It is demonstrated that the utilization of nano silicon is one of an efficient way to increase the structural stability and cycling performance. At present, the fabrication of nano silicon mainly includes chemical vapor deposition, plasma evaporation and condensation method and mechanical ball milling method. However, the above strategies always refer to demanding conditions for equipment, high cost and multi-steps. Therefore, the fabrication of nano silicon with short process and low cost will be of great importance to promote the application of silicon based anode especially silicon/carbon anode for LIBs. In this review, we focus on the recent progress of fabricating nano silicon by metallothermic reduction reactions especially by magnesiothermic reduction and the applications in LIBs. The technological advantages of metallothermic reduction reactions are analyzed. The properties of nano silicon obtained by magnesiothermic reduction are studied. Besides, the development prospect of low cost fabrication of nano silicon by metallothermic reduction reactions is discussed.
玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
YU Riquan. Research Progress of Metallothermic Reduction Reactions for Nano Silicon Preparation and Application in Lithium Ion Batteries. Materials Reports, 2021, 35(3): 3041-3049.
Scrosati B, Hassoun J, Sun Y K.Energy & Environmental Science,2011,4(9),3287.2 Armand M, Tarascon J M.Nature,2008,451(7179),652.3 Zhou X, Yu Y, Yang J, et al.ChemElectroChem,2019,6(7),2056.4 Feng K, Li M, Liu W, et al.Small,2018,14(8),1702737.5 Zheng M, Tang H, Li L, et al.Advanced Science,2018,5(3),1700592.6 Zhou H, Li Z, Wang K, et al.Journal of Materials Chemistry A,2019,7(4),1779.7 Wei Z, Wang L, Zhuo M, et al.Journal of Materials Chemistry A,2018,6(26),12185.8 He X, Tian L, Qiao M, et al.Journal of Materials Chemistry A,2019,7(18),114786.9 Cangaz S, Hippauf F, Reuter F S, et al.Advanced Energy Materials,2020,10(34),2001320.10 Zuo X, Zhu J, Müller-Buschbaum P, et al.Nano Energy,2017,31,113.11 Liu N, Lu Z, Zhao J, et al.Nature Nanotechnology,2014,9(3),187.12 Nie M, Abraham D P, Chen Y, et al.The Journal of Physical Chemistry C,2013,117(26),13403.13 Zheng J, Zheng H, Wang R, et al.Physical Chemistry Chemical Physics,2014,16(26),13229.14 Zhao X, Hayner C M, Kung M C, et al.Advanced Energy Materials,2011,1(6),1079.15 Molina Piper D, Evans T, Xu S, et al.Advanced Materials,2016,28(1),188.16 Wu J, Qin X, Miao C, et al.Carbon,2016,98,582.17 Kovalenko I, Zdyrko B, Magasinski A, et al.Science,2011,334(6052),75.18 Koo B, Kim H, Cho Y, et al.Angewandte Chemie International Edition,2012,51(35),87627.19 Kim S, Jeong Y K, Wang Y, et al.Advanced Materials,2018,30(26),1707594.20 Lin Y M, Klavetter K C, Abel P R, et al.Chemical Communications,2012,48(58),7268.21 Etacheri V, Haik O, Goffer Y, et al.Langmuir,2011,28(1),965.22 Chen L, Wang K, Xie X, et al.Journal of Power Sources,2007,174(2),538.23 Huang G, Han J, Lu Z, et al.ACS Nano,2020,14(4),4374.24 Chan C K, Peng H, Liu G, et al.Nature Nanotechnology,2008,3(1),31.25 Maranchi J P, Hepp A F, Kumta P N.Electrochemical and Solid-State Letters,2003,6(9),A198.26 Yao Y, McDowell M T, Ryu I, et al.Nano Letters,2011,11(7),2949.27 Liu X H, Zhong L, Huang S, et al.ACS Nano,2012,6(2),1522.28 Kim H, Han B, Choo J, et al.Angewandte Chemie International Edition,2008,47(52),10151.29 Tang J, Yin Q, Wang Q, et al.Nanoscale,2019,11,10984.30 An W, Gao B, Mei S, et al.Nature Communications,2019,10(1),1447.31 Jia H, Zheng J, Song J, et al.Nano Energy,2018,50,589.32 Li X, Gu M, Hu S, et al.Nature Communications,2014,5,4105.33 Lin D, Lu Z, Hsu P C, et al.Energy & Environmental Science,2015,8(8),2371.34 Li Y, Yan K, Lee H W, et al.Nature Energy,2016,1(2),15029.35 Xu Q, Li J Y, Sun J K, et al.Advanced Energy Materials,2017,7(3),1601481.36 Lu Z, Liu N, Lee H W, et al.ACS Nano,2015,9(3),2540.37 Chae S, Ko M, Park S, et al.Energy & Environmental Science,2016,9(4),1251.38 Shin J, Cho E A.Chemistry of Materials,2018,30(10),3233.39 Ma Q, Qu J, Chen X, et al.Sustainalbe Energy & Fuels,2020,4,4780.40 Zhu S, Zhou J, Guan Y, et al.Small,2018,14(47),1802457.41 Lee J H, Kim W J, Kim J Y, et al.Journal of Power Sources,2008,176(1),353.42 Zhang S Y, Zhang X, Wang Y J, et al.Metal World,2019(1),31(in Chinese).张思源,张鑫,王彦军,等.金属世界,2019(1),31.43 Zhu X, Chen H, Wang Y, et al.Journal of Materials Chemistry A,2013,1(14),4483.44 Wang L, Zhang Z, Liu W, et al.Superhard Material Engineering,2018(2),41(in Chinese).王立惠,张振军,刘文平,等.超硬材料工程,2018(2),41.45 Lam C, Zhang Y F, Tang Y H, et al.Journal of Crystal Growth,2000,220(4),466.46 Holzapfel M, Buqa H, Hardwick L J, et al.Electrochimica Acta,2006,52(3),973.47 Xing Z, Lu J, Ji X.Small Methods,2018,2(12),1800062.48 Meyer G.Zeitschrift Für Anorganische und Allgemeine Chemie,2007,633(15),2537.49 Fuentes A F, Torres J, Ortiz J C, et al.Journal of Rare Earths,2011,29(1),74.50 Van Vuuren D S, Oosthuizen S J, Heydenrych M D.Journal of the Sout-hern African Institute of Mining and Metallurgy,2011,111(3),141.51 Setoudeh N, Welham N J.Journal of Materials Science,2017,52(11),6388.52 Moriarty J L.JOM,1968,20(11),41.53 Orgera M.U.S. patent,4,581,065.1986.54 Jalaly M, Tamizifar M, Bafghi M S, et al.Journal of Alloys and Compounds,2013,581,782.55 Okabe T H, Oda T, Mitsuda Y.Journal of Alloys and Compounds,2004,364(1-2),156.56 Schleid T, Meyer G, Morss L R.Journal of the Less Common Metals,1987,132(1),69.57 Block F E, Brown R R, Ferrante M J.Metallothermic reduction of vanadium chlorides, Bureau of Mines Press, US,1961.58 Sandhage K H, Dickerson M B, Huseman P M, et al.Advanced Mate-rials,2002,14(6),429.59 Wang W, Xu X, Li B, et al.Chinese Journal of Inorganic Chemistry,2018(12),2219(in Chinese).王文广,许笑目,李斌,等.无机化学学报,2018(12),2219.60 Bao Z, Weatherspoon M R, Shian S, et al.Nature,2007,446(7132),172.61 Richman E K, Kang C B, Brezesinski T, et al.Nano Letters,2008,8(9),3075.62 Chen W, Fan Z, Dhanabalan A, et al.Journal of the Electrochemical Society,2011,158(9),A1055.63 Jia H, Gao P, Yang J, et al.Advanced Energy Materials,2011,1(6),1036.64 Yu Y, Gu L, Zhu C, et al.Advanced Materials,2010,22(20),2247.65 Wu P, Wang H, Tang Y, et al.ACS Applied Materials & Interfaces,2014,6(5),3546.66 Xie J, Wang G, Huo Y, et al.Electrochimica Acta,2014,135,94.67 Zhou Y, Jiang X, Chen L, et al.Electrochimica Acta,2014,127,252.68 Chen D, Mei X, Ji G, et al.Angewandte Chemie International Edition,2012,51(10),2409.69 Nie P, Le Z, Chen G, et al.Small,2018,14(25),1800635.70 Real C, Alcala M D, Criado J M.Journal of the American Ceramic Society,1996,79(8),2012.71 Liu N, Huo K, McDowell M T, et al.Scientific Reports,2013,3,1919.72 Shen L, Guo X, Fang X, et al.Journal of Power Sources,2012,213,229.73 Zhou X, Wu L, Yang J, et al.Journal of Power Sources,2016,324,33.74 Ryu J, Hong D, Choi S, et al. ACS Nano,2016,10(2),2843.75 Liu J, Kopold P, van Aken P A, et al.Angewandte Chemie International Edition,2015,54(33),9632.76 Shen L, Guo X, Fang X, et al.Journal of Power Sources,2012,213,229.77 Kim W S, Hwa Y, Shin J H, et al.Nanoscale,2014,6(8),4297.78 Favors Z, Wang W, Bay H H, et al.Scientific Reports,2014,4,5623.79 Chen Q, Zhu R, Liu S, et al.Journal of Materials Chemistry A,2018,6(15),6356.80 Yue X Y, Abulikemu A, Li X L, et al.Journal of Power Sources,2019,410,132.81 Chen Q, Liu S, Zhu R, et al.Journal of Power Sources,2018,405,61.82 Jiang Y, Zhang Y, Yan X, et al.Chemical Engineering Journal,2017,330,1052.83 Li C, Liu C, Wang W, et al.Scientific Reports,2017,7(1),917.84 Choi M, Kim J C, Kim D W.Scientific Reports,2018,8(1),960.85 Yan Z, Guo J.Nano Energy,2019,63,103845.86 Luo W, Wang X, Meyers C, et al.Scientific Reports,2013,3,2222.87 Wang W, Favors Z, Ionescu R, et al.Scientific Reports,2015,5,8781.88 Yoon T, Bok T, Kim C, et al.ACS Nano,2017,11(5),4808.89 Chen S, Chen Z, Xu X, et al.Small,2018,14(12),1703361.90 Kim K H, Lee D J, Cho K M, et al.Scientific Reports,2015,5,9014.91 Wang M, Ma Y, Jiang J, et al.ChemElectroChem,2019,6(4),1139.92 Cook J B, Kim H S, Lin T C, et al.ACS Applied Materials & Interfaces,2017,9(22),19063.93 Han P, Sun W, Li D, et al.Applied Surface Science,2019,481,933.94 Liang J, Li X, Cheng Q, et al.Nanoscale,2015,7(8),3440.95 Zhang R, Du Y, Li D, et al.Advanced Materials,2014,26(39),6749.96 Chen S, Shen L, van Aken P A, et al.Advanced materials,2017,29(21),1605650.97 Li B, Qi R, Zai J, et al.Small,2016,12(38),5281.98 Kim Y M, Ahn J, Yu S H, et al.Electrochimica Acta,2015,151,256.99 Li F, Wang Z, Liu W, et al.ACS Applied Energy Materials,2019,2(3),2268.100 Lin N, Han Y, Zhou J, et al.Energy & Environmental Science,2015,8(11),3187.101 Lin N, Han Y, Wang L, et al.Angewandte Chemie International Edition,2015,54(12),3822.102 Li F S, Wu Y S, Chou J, et al.Chemical Communications,2015,51(40),8429.103 Ko M, Chae S, Ma J, et al.Nature Energy,2016,1(9),16113.104 Cao P F, Naguib M, Du Z, et al.ACS Applied Materials & Interfaces,2018,10(4),3470.105 Choi J W, Aurbach D.Nature Reviews Materials,2016,1(4),16013.106 Kim S Y, Lee J, Kim B H, et al.ACS Applied Materials & Interfaces,2016,8(19),12109.107 Kim N, Chae S, Ma J, et al.Nature Communications,2017,8(1),812.