Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3041-3049    https://doi.org/10.11896/cldb.19110095
  无机非金属及其复合材料 |
金属热还原法制备锂离子电池纳米硅材料的研究进展
玉日泉
长沙有色冶金设计研究院有限公司,长沙 410083
Research Progress of Metallothermic Reduction Reactions for Nano Silicon Preparation and Application in Lithium Ion Batteries
YU Riquan
CINF Engineering Co., Ltd., Changsha 410083, China
下载:  全 文 ( PDF ) ( 7767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池作为一种绿色环保的储能器件,在许多领域得到了广泛应用,如手机、笔记本、摄像机、医疗器械等便携式电子器件以及新能源电动汽车等。特别地,随着社会的进步、人类的发展,能源枯竭、石油危机、汽车尾气排放等问题日趋严峻,新能源动力汽车异军突起,而锂离子电池作为动力电池的最优选择,其能量密度的提升对推动新能源动力汽车领域的发展具有重大意义。锂离子电池电极材料是限制其能量密度的关键因素。目前,锂离子电池所采用的负极材料为石墨,其理论比容量仅为372 mAh/g。在众多新型负极材料中,硅材料因具有4 200 mAh/g的超高理论比容量而备受研究者瞩目,但是硅材料自身存在导电率低、体积膨胀大、结构不稳定等问题,导致其电化学性能不佳。研究者们主要通过将硅材料纳米化来提高其结构稳定性及循环稳定性。
当前,纳米硅材料的制备方法主要有化学气相沉积法、等离子蒸发冷凝法及机械球磨法,但是普遍存在对设备要求条件苛刻、制备成本高、流程复杂等问题。实现纳米硅的短流程、低成本制备,对于推动硅基负极,特别是硅碳复合负极的商业化应用具有重要意义。本文重点综述了基于金属热还原特别是镁热还原法制备的纳米硅在锂离子电池中的研究进展,分析了采用金属热还原制备纳米硅的技术优势,总结了近年来镁热还原制备的纳米硅基负极材料的性能,展望了金属热还原技术低成本制备纳米硅材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
玉日泉
关键词:  金属热还原  镁热还原  纳米硅  负极  锂离子电池    
Abstract: As a kind of green and environmental-friendly energy storage, lithium ion batteries (LIBs) are received widely used in many fields, such as mobile phone, laptop, camera, medical instrument and other portable electronic devices, even in new energy electric vehicle. Especially, with the progress of society and the development of human beings, depletion of energy resources, oil crisis and motor vehicle exhaust problems are increasingly serious day by day. The dramatic rise of new energy powered cars asserts requirement of LIBs, which is regarded as one of the most suitable energy devices. And the improvement of energy density of LIBs will be of great significance to the development of new energy po-wered cars. The electrode materials are typical factors that limit the energy density of LIBs. Currently, the commercialized anode for LIBs are graphite, which have a very limited theoretical capacity of 372 mAh/g. Among various new type promising anodes, silicon has reached considerable attention due to its ultrahigh theoretical capacity of 4 200 mAh/g. However, the low electronic conductivity, large volume expansion and unstable structure lead to the poor electrochemical performance of silicon anodes. It is demonstrated that the utilization of nano silicon is one of an efficient way to increase the structural stability and cycling performance.
At present, the fabrication of nano silicon mainly includes chemical vapor deposition, plasma evaporation and condensation method and mechanical ball milling method. However, the above strategies always refer to demanding conditions for equipment, high cost and multi-steps. Therefore, the fabrication of nano silicon with short process and low cost will be of great importance to promote the application of silicon based anode especially silicon/carbon anode for LIBs. In this review, we focus on the recent progress of fabricating nano silicon by metallothermic reduction reactions especially by magnesiothermic reduction and the applications in LIBs. The technological advantages of metallothermic reduction reactions are analyzed. The properties of nano silicon obtained by magnesiothermic reduction are studied. Besides, the development prospect of low cost fabrication of nano silicon by metallothermic reduction reactions is discussed.
Key words:  metallothermic reduction    magnesiothermic reduction    nano silicon    anode    lithium ion batteries
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TM912  
作者简介:  玉日泉,2013年毕业于中南大学冶金与环境学院,获冶金工程专业工学硕士学位。现为长沙有色冶金设计研究院有限公司冶金事业部工程师,主要从事铜、铅、锌、镍、钴冶炼工艺的设计。
引用本文:    
玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
YU Riquan. Research Progress of Metallothermic Reduction Reactions for Nano Silicon Preparation and Application in Lithium Ion Batteries. Materials Reports, 2021, 35(3): 3041-3049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110095  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3041
1 Scrosati B, Hassoun J, Sun Y K.Energy & Environmental Science,2011,4(9),3287.2 Armand M, Tarascon J M.Nature,2008,451(7179),652.3 Zhou X, Yu Y, Yang J, et al.ChemElectroChem,2019,6(7),2056.4 Feng K, Li M, Liu W, et al.Small,2018,14(8),1702737.5 Zheng M, Tang H, Li L, et al.Advanced Science,2018,5(3),1700592.6 Zhou H, Li Z, Wang K, et al.Journal of Materials Chemistry A,2019,7(4),1779.7 Wei Z, Wang L, Zhuo M, et al.Journal of Materials Chemistry A,2018,6(26),12185.8 He X, Tian L, Qiao M, et al.Journal of Materials Chemistry A,2019,7(18),114786.9 Cangaz S, Hippauf F, Reuter F S, et al.Advanced Energy Materials,2020,10(34),2001320.10 Zuo X, Zhu J, Müller-Buschbaum P, et al.Nano Energy,2017,31,113.11 Liu N, Lu Z, Zhao J, et al.Nature Nanotechnology,2014,9(3),187.12 Nie M, Abraham D P, Chen Y, et al.The Journal of Physical Chemistry C,2013,117(26),13403.13 Zheng J, Zheng H, Wang R, et al.Physical Chemistry Chemical Physics,2014,16(26),13229.14 Zhao X, Hayner C M, Kung M C, et al.Advanced Energy Materials,2011,1(6),1079.15 Molina Piper D, Evans T, Xu S, et al.Advanced Materials,2016,28(1),188.16 Wu J, Qin X, Miao C, et al.Carbon,2016,98,582.17 Kovalenko I, Zdyrko B, Magasinski A, et al.Science,2011,334(6052),75.18 Koo B, Kim H, Cho Y, et al.Angewandte Chemie International Edition,2012,51(35),87627.19 Kim S, Jeong Y K, Wang Y, et al.Advanced Materials,2018,30(26),1707594.20 Lin Y M, Klavetter K C, Abel P R, et al.Chemical Communications,2012,48(58),7268.21 Etacheri V, Haik O, Goffer Y, et al.Langmuir,2011,28(1),965.22 Chen L, Wang K, Xie X, et al.Journal of Power Sources,2007,174(2),538.23 Huang G, Han J, Lu Z, et al.ACS Nano,2020,14(4),4374.24 Chan C K, Peng H, Liu G, et al.Nature Nanotechnology,2008,3(1),31.25 Maranchi J P, Hepp A F, Kumta P N.Electrochemical and Solid-State Letters,2003,6(9),A198.26 Yao Y, McDowell M T, Ryu I, et al.Nano Letters,2011,11(7),2949.27 Liu X H, Zhong L, Huang S, et al.ACS Nano,2012,6(2),1522.28 Kim H, Han B, Choo J, et al.Angewandte Chemie International Edition,2008,47(52),10151.29 Tang J, Yin Q, Wang Q, et al.Nanoscale,2019,11,10984.30 An W, Gao B, Mei S, et al.Nature Communications,2019,10(1),1447.31 Jia H, Zheng J, Song J, et al.Nano Energy,2018,50,589.32 Li X, Gu M, Hu S, et al.Nature Communications,2014,5,4105.33 Lin D, Lu Z, Hsu P C, et al.Energy & Environmental Science,2015,8(8),2371.34 Li Y, Yan K, Lee H W, et al.Nature Energy,2016,1(2),15029.35 Xu Q, Li J Y, Sun J K, et al.Advanced Energy Materials,2017,7(3),1601481.36 Lu Z, Liu N, Lee H W, et al.ACS Nano,2015,9(3),2540.37 Chae S, Ko M, Park S, et al.Energy & Environmental Science,2016,9(4),1251.38 Shin J, Cho E A.Chemistry of Materials,2018,30(10),3233.39 Ma Q, Qu J, Chen X, et al.Sustainalbe Energy & Fuels,2020,4,4780.40 Zhu S, Zhou J, Guan Y, et al.Small,2018,14(47),1802457.41 Lee J H, Kim W J, Kim J Y, et al.Journal of Power Sources,2008,176(1),353.42 Zhang S Y, Zhang X, Wang Y J, et al.Metal World,2019(1),31(in Chinese).张思源,张鑫,王彦军,等.金属世界,2019(1),31.43 Zhu X, Chen H, Wang Y, et al.Journal of Materials Chemistry A,2013,1(14),4483.44 Wang L, Zhang Z, Liu W, et al.Superhard Material Engineering,2018(2),41(in Chinese).王立惠,张振军,刘文平,等.超硬材料工程,2018(2),41.45 Lam C, Zhang Y F, Tang Y H, et al.Journal of Crystal Growth,2000,220(4),466.46 Holzapfel M, Buqa H, Hardwick L J, et al.Electrochimica Acta,2006,52(3),973.47 Xing Z, Lu J, Ji X.Small Methods,2018,2(12),1800062.48 Meyer G.Zeitschrift Für Anorganische und Allgemeine Chemie,2007,633(15),2537.49 Fuentes A F, Torres J, Ortiz J C, et al.Journal of Rare Earths,2011,29(1),74.50 Van Vuuren D S, Oosthuizen S J, Heydenrych M D.Journal of the Sout-hern African Institute of Mining and Metallurgy,2011,111(3),141.51 Setoudeh N, Welham N J.Journal of Materials Science,2017,52(11),6388.52 Moriarty J L.JOM,1968,20(11),41.53 Orgera M.U.S. patent,4,581,065.1986.54 Jalaly M, Tamizifar M, Bafghi M S, et al.Journal of Alloys and Compounds,2013,581,782.55 Okabe T H, Oda T, Mitsuda Y.Journal of Alloys and Compounds,2004,364(1-2),156.56 Schleid T, Meyer G, Morss L R.Journal of the Less Common Metals,1987,132(1),69.57 Block F E, Brown R R, Ferrante M J.Metallothermic reduction of vanadium chlorides, Bureau of Mines Press, US,1961.58 Sandhage K H, Dickerson M B, Huseman P M, et al.Advanced Mate-rials,2002,14(6),429.59 Wang W, Xu X, Li B, et al.Chinese Journal of Inorganic Chemistry,2018(12),2219(in Chinese).王文广,许笑目,李斌,等.无机化学学报,2018(12),2219.60 Bao Z, Weatherspoon M R, Shian S, et al.Nature,2007,446(7132),172.61 Richman E K, Kang C B, Brezesinski T, et al.Nano Letters,2008,8(9),3075.62 Chen W, Fan Z, Dhanabalan A, et al.Journal of the Electrochemical Society,2011,158(9),A1055.63 Jia H, Gao P, Yang J, et al.Advanced Energy Materials,2011,1(6),1036.64 Yu Y, Gu L, Zhu C, et al.Advanced Materials,2010,22(20),2247.65 Wu P, Wang H, Tang Y, et al.ACS Applied Materials & Interfaces,2014,6(5),3546.66 Xie J, Wang G, Huo Y, et al.Electrochimica Acta,2014,135,94.67 Zhou Y, Jiang X, Chen L, et al.Electrochimica Acta,2014,127,252.68 Chen D, Mei X, Ji G, et al.Angewandte Chemie International Edition,2012,51(10),2409.69 Nie P, Le Z, Chen G, et al.Small,2018,14(25),1800635.70 Real C, Alcala M D, Criado J M.Journal of the American Ceramic Society,1996,79(8),2012.71 Liu N, Huo K, McDowell M T, et al.Scientific Reports,2013,3,1919.72 Shen L, Guo X, Fang X, et al.Journal of Power Sources,2012,213,229.73 Zhou X, Wu L, Yang J, et al.Journal of Power Sources,2016,324,33.74 Ryu J, Hong D, Choi S, et al. ACS Nano,2016,10(2),2843.75 Liu J, Kopold P, van Aken P A, et al.Angewandte Chemie International Edition,2015,54(33),9632.76 Shen L, Guo X, Fang X, et al.Journal of Power Sources,2012,213,229.77 Kim W S, Hwa Y, Shin J H, et al.Nanoscale,2014,6(8),4297.78 Favors Z, Wang W, Bay H H, et al.Scientific Reports,2014,4,5623.79 Chen Q, Zhu R, Liu S, et al.Journal of Materials Chemistry A,2018,6(15),6356.80 Yue X Y, Abulikemu A, Li X L, et al.Journal of Power Sources,2019,410,132.81 Chen Q, Liu S, Zhu R, et al.Journal of Power Sources,2018,405,61.82 Jiang Y, Zhang Y, Yan X, et al.Chemical Engineering Journal,2017,330,1052.83 Li C, Liu C, Wang W, et al.Scientific Reports,2017,7(1),917.84 Choi M, Kim J C, Kim D W.Scientific Reports,2018,8(1),960.85 Yan Z, Guo J.Nano Energy,2019,63,103845.86 Luo W, Wang X, Meyers C, et al.Scientific Reports,2013,3,2222.87 Wang W, Favors Z, Ionescu R, et al.Scientific Reports,2015,5,8781.88 Yoon T, Bok T, Kim C, et al.ACS Nano,2017,11(5),4808.89 Chen S, Chen Z, Xu X, et al.Small,2018,14(12),1703361.90 Kim K H, Lee D J, Cho K M, et al.Scientific Reports,2015,5,9014.91 Wang M, Ma Y, Jiang J, et al.ChemElectroChem,2019,6(4),1139.92 Cook J B, Kim H S, Lin T C, et al.ACS Applied Materials & Interfaces,2017,9(22),19063.93 Han P, Sun W, Li D, et al.Applied Surface Science,2019,481,933.94 Liang J, Li X, Cheng Q, et al.Nanoscale,2015,7(8),3440.95 Zhang R, Du Y, Li D, et al.Advanced Materials,2014,26(39),6749.96 Chen S, Shen L, van Aken P A, et al.Advanced materials,2017,29(21),1605650.97 Li B, Qi R, Zai J, et al.Small,2016,12(38),5281.98 Kim Y M, Ahn J, Yu S H, et al.Electrochimica Acta,2015,151,256.99 Li F, Wang Z, Liu W, et al.ACS Applied Energy Materials,2019,2(3),2268.100 Lin N, Han Y, Zhou J, et al.Energy & Environmental Science,2015,8(11),3187.101 Lin N, Han Y, Wang L, et al.Angewandte Chemie International Edition,2015,54(12),3822.102 Li F S, Wu Y S, Chou J, et al.Chemical Communications,2015,51(40),8429.103 Ko M, Chae S, Ma J, et al.Nature Energy,2016,1(9),16113.104 Cao P F, Naguib M, Du Z, et al.ACS Applied Materials & Interfaces,2018,10(4),3470.105 Choi J W, Aurbach D.Nature Reviews Materials,2016,1(4),16013.106 Kim S Y, Lee J, Kim B H, et al.ACS Applied Materials & Interfaces,2016,8(19),12109.107 Kim N, Chae S, Ma J, et al.Nature Communications,2017,8(1),812.
[1] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[2] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[3] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[4] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[5] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[6] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[7] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[8] 李宵波, 张盼盼, 何亚鹏, 黄惠, 郭忠诚. 铅酸电池负极添加剂的研究进展[J]. 材料导报, 2020, 34(5): 5039-5047.
[9] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[10] 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
[11] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[12] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[13] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[14] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[15] 蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed