Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 69-73    https://doi.org/10.11896/j.issn.1005-023X.2017.021.010
  材料综述 |
纳米二氧化钛亲油化改性及其摩擦学性能研究进展*
林彬1, 2, 陈国需1, 粟斌2, 徐万里2
1 后勤工程学院军事油料应用与管理工程系,重庆 401311;
2 中国人民解放军总后勤部油料研究所,北京 102300
Review on Oleophylic Modification and Tribological Properties of Titanium Dioxide Nanoparticles
LIN Bin1,2, CHEN Guoxu1, SU Bin2, XU Wanli2
1 Dep. of Oil Application and Management Engineering, Logistic Engineering University, Chongqing 401311;
2 Beijing Oil Research Institute of PLA, Beijing 102300
下载:  全 文 ( PDF ) ( 1421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米二氧化钛粉体具有优良的自修复性能,但因其在润滑油介质中的分散稳定性和经济工况下的摩擦学性能不佳,至今并未得到广泛应用。综述了近年来纳米二氧化钛亲油化改性和摩擦学性能的研究成果,对目前存在的问题进行了分析,并展望了纳米二氧化钛添加剂的研究前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林彬
陈国需
粟斌
徐万里
关键词:  纳米二氧化钛  亲油化改性  摩擦学    
Abstract: Titanium dioxide nanoparticles have excellent self-repair properties. But due to the poor dispersion stability in lubricant and poor tribological properties under normal conditions, this self-repair additives have not been widely used. In this paper, the research results of the modification and tribological properties of titanium dioxide nanoparticles in recent years are reviewed, the existing problems are analyzed, and the prospect of titanium dioxide additives are prospected.
Key words:  titanium dioxide nanoparticles    oleophylic modification    tribology
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TH117.2  
基金资助: 重庆市科委项目(kj1754491);重庆市科技攻关(CSTC2009AC4224)
通讯作者:  陈国需,男,1952年生,教授,博士研究生导师,研究方向为润滑原理及油品应用 E-mail:chen_guoxu@21cn.com   
作者简介:  林彬:男,1994年生,硕士研究生,研究方向为润滑原理及添加剂 E-mail:linbms@outlook.com
引用本文:    
林彬, 陈国需, 粟斌, 徐万里. 纳米二氧化钛亲油化改性及其摩擦学性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 69-73.
LIN Bin, CHEN Guoxu, SU Bin, XU Wanli. Review on Oleophylic Modification and Tribological Properties of Titanium Dioxide Nanoparticles. Materials Reports, 2017, 31(21): 69-73.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.010  或          http://www.mater-rep.com/CN/Y2017/V31/I21/69
1 Xiao D Z, Chen G X, Chen P, et al. A review of oil-soluble organo-molybdenum as friction modifier additive[J]. Mater Rev:Rev, 2016,30(12):59(in Chinese).
肖德志, 陈国需, 程鹏,等. 油溶性有机钼作为摩擦改进剂的研究进展[J]. 材料导报:综述篇, 2016,30(12):59.
2 Xu B S, Zhu S, Ma S N, et al. Construct and development of equipment remanufacture engineering specialty[J]. Chin Surf Eng, 2003,16(3):1(in Chinese).
徐滨士, 朱胜, 马世宁,等. 装备再制造工程学科的建设和发展[J]. 中国表面工程, 2003,16(3):1.
3 Li J, Chen G X, Li H F, et al. Testing methods of repairing effect to self-repairing additives[J]. Synth Lubricants, 2014,41(1):29(in Chinese).
李进, 陈国需, 李华峰,等. 自修复添加剂修复效果的检测方法[J]. 合成润滑材料, 2014,41(1):29.
4 Liang C, Chen W G, Feng S S, et al. Friction properties of modified nanoparticles TiO2/SiO2 as lubricant additives[J]. Guangdong Chem Ind, 2014(8):1(in Chinese).
梁超, 陈文刚, 冯少盛, 等. 改性纳米TiO2/SiO2作为润滑油添加剂的摩擦性能研究[J]. 广东化工, 2014(8):1.
5 Xie X B, Chen G X, Sun X, et al. Investigation of wear automatic restoration action and properties of nano-TiO2 as lubricating additive[J]. Chin Surf Eng, 2008(2):36(in Chinese).
谢学兵, 陈国需, 孙霞, 等. 润滑油纳米TiO2添加剂的摩擦自修复及其性能研究[J]. 中国表面工程, 2008(2):36.
6 Ye W, Cheng T, Ye Q, et al. Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2, nanoparticles as lubricant additives[J]. Mater Sci Eng A, 2003,359(1-2):82.
7 Guo L Y. Study on dispersion and the surface modification of nanometer titanium dioxide [D]. Shanghai:Donghua University, 2015(in Chinese).
郭璐瑶. 纳米二氧化钛分散及其表面改性研究[D]. 上海:东华大学, 2015.
8 Lin H X, Wang X X, Fu X Z. Properties and distribution of the surface hydroxyl groups of TiO2[J]. Prog Chem, 2007(5):665(in Chinese).
林华香, 王绪绪, 付贤智. TiO2表面羟基及其性质[J]. 化学进展, 2007(5):665.
9 Finnie K S, Cassidy D J, Bartlett J R, et al. IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films[J]. Langmuir, 2001,17(3):816.
10Takeuchi M, Martra G, Coluccia S, et al. Investigations of the structure of H2O clusters adsorbed on TiO2 surfaces by near-infrared absorption spectroscopy[J]. J Phys Chem B, 2005,109(15):7387.
11Herman G S, Dohnalek Z, Ruzycki N, et al. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101)[J]. J Phys Chem B, 2003,107(12):2788.
12Vittadini A, Selloni A, Rotzinger F P, et al. Structure and energe-tics of water adsorbed at TiO2anatase (101) and (001) surfaces[J]. Phys Rev Lett, 1998,81(14):2954.
13Bourgeois S, Jomard F, Perdereau M. Use of isotopic labelling in a SIMS study of the hydroxylation of TiO2 (100) surfaces[J]. Surf Sci, 1992,279(3): 349.
14Bezrodna T, Puchkovska G, Shymanovska V, et al. IR-analysis of H-bonded H2O on the pure TiO2 surface[J]. J Mol Struct, 2004,700(1): 175.
15Kesselman J M, Weres O, And N S L, et al. Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways[J]. J Phys Chem B, 1997,101(14):2637.
16Augugliaro V, Palmisano L, Sclafani A, et al. Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions[J]. Toxicol Environ Chem, 1988,16(2):89.
17Okamoto K, Yamamoto Y, Tanaka H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder[J]. Bull Chem Soc Jpn, 1985,58(7):2015.
18Gu K C, Chen B S, Wei Y L, et al. Preparation,friction and wear properties of hydrophobic TiO2 nanoparticles in rapeseed oil[J]. J Logistic Engineering University, 2014(3):54(in Chinese).
谷科城, 陈波水, 韦友亮, 等. 疏水性纳米TiO2制备及其在菜籽油中的摩擦磨损性能[J]. 后勤工程学院学报, 2014(3):54.
19Chen P, Chen M, Gao F. Study on tribological performance of TiO2 nano-particles[J]. J Chongqing Petroleum College, 2004(2):20(in Chinese).
程鹏, 陈明, 高峰. 纳米TiO2添加剂的摩擦学性能研究[J]. 重庆石油高等专科学校学报, 2004(2):20.
20Cheng P, Li H F, Zhao L T, et al. Study on the surface modification of TiO2 nano-particles lube additive and its self-repairing performance[J]. Petroleum Processing Petrochem, 2006(9):55(in Chinese).
程鹏, 李华峰, 赵立涛, 等. 润滑油用纳米TiO2的表面改性及自修复性能研究[J]. 石油炼制与化工, 2006(9):55.
21Hofer R, Textor A M, Spencer N D. Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces[J]. Langmuir, 2001,17(13):4014.
22Piwoński I, Kisielewska A. Dialkyldithiophosphate acids (HDDPs) as effective lubricants of sol-gel titania coatings in technical dry friction conditions[J]. Tribology Lett, 2012,45(45):237.
23Bahloul W, Mélis F, Bounor-Legaré V, et al. Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol-gel method[J]. Mater Chem Phys, 2012,134(1): 399.
24Cho S, Choi W. Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites[J]. J Photochem Photobiol A: Chem, 2001,143(2): 221.
25Deng K L, Ren X B, Jiao Y S, et al. Preparation of poly (methyl acrylate)/TiO2 composites by potassium diperiodatocuprate initiated grafting copolymerization[J]. Iran Polym J, 2010,19(1):17.
26Li X W, Song R G, Jiang Y, et al. Surface modification of TiO2 nanoparticles and its effect on the properties of fluoropolymer/TiO2 nanocomposite coatings[J]. Appl Surf Sci, 2013,276:761.
27Li G L, Xu L Q, Tang X, et al. Hairy hollow microspheres of fluorescent shell and temperature-responsive brushes via combined distillation-precipitation polymerization and thiol ene click chemistry[J]. Macromolecules, 2010,43(13):5797.
28Ou Z W. In-situ synthesis and tribological characteristic of nanoparticles possessing the particularity of ultra dispersion and stabilization [D]. Chongqing:Chongqing University, 2003 (in Chinese).
欧忠文. 基于原位合成方法的超分散稳定纳米组元的制备及其摩擦学特性 [D]. 重庆: 重庆大学, 2003.
29Ning R, Chen D, Zhang Q, et al. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling[J]. Appl Surf Sci, 2014,316(1):632.
30Yan J, Dai L Y, Meng R G, et al. Tribological properties of surface modificated nano-TiO2 prepared by plasma assisted ball milling[J]. Tribology, 2016(1):20(in Chinese).
闫锦, 戴乐阳, 孟荣刚, 等. 等离子体辅助球磨制备表面修饰纳米TiO2的摩擦学性能分析[J]. 摩擦学学报, 2016(1):20.
31Tao Y G, Zhen J, Zhu L B, et al. Phosphate regulate the microstructure and surface hydroxyl density of nano-titanium dioxide[J]. Chem Ind Eng Prog, 2015(5):1401(in Chinese).
陶玉贵, 郑洁, 朱龙宝, 等. 磷酸盐调控纳米TiO2微结构及其表面羟基密度[J]. 化工进展, 2015(5):1401.
32徐东鹏, 夏永侠, 李玉福. 微粒状氧化物表面羟基的测定[J]. 化学通报, 1981(5):25.
33Xue Q J, Xu K. Nanochemistry[J]. Prog Chem, 2000,12(4):431(in Chinese).
薛群基, 徐康. 纳米化学[J]. 化学进展, 2000,12(4):431.
34Wang X Y, Chen Y Z. Application of nanomaterials in lubrication technique[J]. Chem Ind Eng Prog, 2001,20(2):27(in Chinese).
王晓勇, 陈月珠. 纳米材料在润滑技术中的应用[J]. 化工进展, 2001,20(2):27.
35Wen Z Z, Xia Y Q, Feng X, et al. Preparation and tribological properties of the overbased calcium sulfonate-titanium complex grease[J]. Tribology, 2013,33(3):209(in Chinese).
闻振中, 夏延秋, 冯欣,等. 高碱值复合磺酸钙-钛基脂的制备及其摩擦学性能研究[J]. 摩擦学学报, 2013,33(3):209.
36Du D C, Dong J X, Yan Y N, et al. On tribological behavior of titanium (Ⅳ) dialkyldithiophosphate and its functional mechanisim[J]. Petroleum Processing Petrochem, 1995(2):62(in Chinese).
杜大昌, 董浚修, 严永年, 等. 二烷基二硫代磷酸钛(Ⅳ)的抗磨性及机理研究[J]. 石油炼制与化工, 1995(2):62.
37Ilie F, Covaliu C, Chisiu G. Tribological study of ecological lubricants containing titanium dioxide nanoparticles[J]. Appl Mech Mater, 2014,658(S):323.
38Oganesova E Y, Kuz’Mina G N, Bordubanova E G, et al. Comparison of antiwear properties of titanium-containing compounds[J]. Petroleum Chem, 2012,52(3):204.
39Cohen S R, Feldman Y, Cohen H, et al. Nanotribology of novel metal dichalcogenides[J]. Appl Surf Sci, 1999,144-145(4):603.
40Rapoport L, Feldman Y, Homyonfer M, et al. Inorganic fullerene-like material as additives to lubricants: Structure-function relationship[J]. Wear, 1999,225:915.
41Fang J H, Chen B S, et al. Tribological mechanisms of nanopraticals as antiwear and friction reducing additives of lubricating oil[J]. Synth Lubricants, 2001,28(2):15(in Chinese).
方建华, 陈波水,等. 纳米润滑添加剂的抗磨减摩机理[J]. 合成润滑材料, 2001,28(2):15.
42Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-modified TiO2nanoparticle as an additive in liquid paraffin[J]. Wear, 1997,213(1-2):29.
43Homola A M, Israelachvili J N, Gee M L, et al. Measurements of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid films[J]. J Tribol, 1989,111(4):675.
44Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium oxide[J]. Wear, 1998,216(1):92.
45Kecheng G, Boshui C, Yong C. Preparation and tribological properties of lanthanum-doped TiO2 nanoparticles in rapeseed oil[J]. J Rare Earths, 2013,31(6):589.
46Gu K, Chen B, Wang X, et al. Preparation, friction, and wear behaviors of cerium-doped anatase nanophases in rapeseed oil[J]. Ind Eng Chem Res, 2014,53(15):6249.
47Chao W L, Wan Y, Wang Y X, et al. Tribological properties of Cu-doped TiO2films[J]. Acta Physico-Chimica Sin, 2010,26(8):2317(in Chinese).
晁闻柳, 万勇, 王云霞,等. Cu掺杂TiO2薄膜的摩擦学性能[J]. 物理化学学报, 2010,26(8):2317.
48Jia Q Y, Zhang Y J, Wu S Z, et al. Influence of Ag dopants on structure and tribological properties of nano structured TiO2film[J]. Lubrication Eng, 2006(7):139(in Chinese).
贾庆远, 张玉娟, 吴志申,等. Ag掺杂对TiO2纳米薄膜结构及摩擦学性能的影响[J]. 润滑与密封, 2006(7):139.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[3] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[4] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[5] 苏鹏, 熊云, 刘晓, 杨鹤, 范林君. 洋葱状纳米碳烟颗粒在基础油中的摩擦学性能[J]. 《材料导报》期刊社, 2018, 32(8): 1258-1262.
[6] 郭韵恬, 王汉青. 稀土镧掺杂纳米二氧化钛复合保鲜包装薄膜的研究[J]. 材料导报, 2018, 32(24): 4357-4362.
[7] 薛勇, 杨保平, 张斌, 张俊彦. 纳米碳材料摩擦学应用的最新进展和未来展望*[J]. 《材料导报》期刊社, 2017, 31(5): 1-8.
[8] 王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰. Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 41-46.
[9] 国洪建, 贾均红, 张振宇, 梁补女, 陈文元, 李博, 汪建义. 脉冲激光沉积VN/Ag复合薄膜的组织及摩擦学性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 55-59.
[10] 郑宇, 王远, 于晓华. Fe+注入增强Ti6Al4V表面喷丸强化层的生物摩擦学性能*[J]. 《材料导报》期刊社, 2017, 31(2): 46-50.
[11] 郑晓辉, 宋皓, 张庆, 叶雄, 孟令东, 谭俊. 激光表面织构化对材料摩擦学性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 68-74.
[12] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[13] 王伟, 文怀兴, 陈威. 海水环境下材料摩擦学行为研究现状*[J]. 《材料导报》期刊社, 2017, 31(11): 51-58.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed