A Review of Three-dimensional and Two-dimensional Halide Perovskite Materials in Their Properties and Applications
SONG Lingting1,2, XIAO Wenbo1,2, HUANG Le3, WU Huaming1,2
1 Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China 2 Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang 330063, China 3 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Abstract: Halide perovskite materials are currently a research hot spot in academia, but there are few comparative analyses of the properties of two-dimensional (2D) and three-dimensional (3D) halide perovskite materials. Through comparison, this article summarizes the different physical and chemical properties of the materials after the dimensional change and the reasons for the property change, and the application fields and problems faced by different properties are analyzed, which provides ideas for the future research of perovskite materials. First of all, both 3D and 2D halide perovskites have the characteristics of adjustable band gap and high tolerance to defects, but the 2D material is more stable than the 3D material in terms of structural stability. The reason is that the 2D halide perovskite material has low combination energy and high tolerance to deformation. Secondly, since the 3D halide perovskite material is dimensionally reduced to obtain a 2D halide perovskite, the periodic metal framework is destroyed during the process. Some electron donor defects or hole acceptor defects have deep energy levels in the 2D material, resulting in the decrease of carrier concentration and the decrease of electronic transmission performance. The 2D material has poor electric mobility ability compared with the 3D material. At the same time, the quantum effect of the 2D material is prominent and the light absorption ability is reduced, so three-dimensional halide perovskites are more suitable for use in solar cell light absorption layers than two-dimensional materials. Thirdly, on the one hand, the 3D halide perovskite materials currently used in light-emitting devices have low external quantum efficiency and require the introduction of work function-matched semiconductor materials to form heterostructures in order to be efficiently applied. On the other hand, although 2D halide perovskites can achieve a variety of continuous luminous spectrum, but the processing technology needs to be improved to meet the needs of large-scale commercial production. Finally, traditional perovskites, as lead-containing compounds, decomposition will affect the environment, so we should produce the new lead-free stable halide perovskite.
作者简介: 宋灵婷,2018年6月毕业于天津工业大学,获得工学学士学位。现为南昌航空大学无损检测技术教育部重点实验室硕士研究生,在肖文波教授的指导下进行研究。目前主要研究低维卤化物钙钛矿材料。 肖文波,南昌航空大学无损检测技术教育部重点实验室教授,硕士研究生导师。1997年7月本科毕业于南昌大学物理系。2008年在中国科学院半导体研究所凝聚态物理专业取得博士学位。肖文波教授系江西省物理学会理事、江西省光学学会理事,主要从事半导体器件、光电检测技术等的研究。主持和参与国家自然科学基金项目等省部级项目17项;获“十二五”航空科学基金优秀项目等省部级奖励6项;发表科研论文60余篇;获得授权发明专利10余项。 黄乐,广东工业大学材料与能源学院副教授、硕士研究生导师。2012年7月本科毕业于兰州大学物理学院,2016年12月在中国科学院半导体研究所凝聚态物理专业取得博士学位。2017—2018年于广东工业大学材料与能源学院担任讲师。2018年4月至2019年7月在北京计算科学研究中心魏苏淮教授课题组担任访问学者。2018年9月至今担任广东工业大学材料与能源学院副教授。主持国家自然科学基金青年项目。主要从事能源材料(包括太阳能电池材料、催化材料、热电铁电材料)的物理性质及其相关机理的研究工作。近年来,发表SCI论文50余篇,包括 Physical Review B, Journal of Physical Chemistry Letters, Journal of Physical Chemistry C和Applied Physics Letters等。
引用本文:
宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
SONG Lingting, XIAO Wenbo, HUANG Le, WU Huaming. A Review of Three-dimensional and Two-dimensional Halide Perovskite Materials in Their Properties and Applications. Materials Reports, 2022, 36(5): 20070246-7.
1 Wan T T, Zhu A K, Guo Y M, et al. Materials Reports A:Review Papers, 2017, 31(3), 16(in Chinese). 万婷婷, 朱安康, 郭友敏, 等. 材料导报:综述篇,2017,31(3),16. 2 Li Z C, Chen Z M, Zou G R X, et al. Acta Physica Sinica, 2019, 68(15), 74(in Chinese). 黎振超, 陈梓铭, 邹广锐兴, 等.物理学报, 2019, 68(15), 74. 3 Zheng J J, Wang Y R, Yu K H, et al. Acta Physica Sinica, 2018, 67(11), 276(in Chinese). 郑加金, 王雅如, 余柯涵, 等.物理学报, 2018, 67(11), 276. 4 Yin W J, Yang J, Kang J, et al. Journal of Materials Chemistry A, 2017, 3(17), 8926. 5 Motta C, El-Mellouhi F, Kais S, et al. Nature Communications, 2015, 6(1), 1. 6 Li W, Niu S, Zhao B, et al. Physical Review Materials, 2019, 3(10), 101601. 7 Zhou C, Lin H, He Q, et al. Materials Science & Engineering R, 2019, 137(2019), 38. 8 Ma X, Zhuang S W, Han L J, et al. Chinese Journal of Luminescence, 2019, 40(8), 949(in Chinese). 马雪, 庄仕伟, 韩丽锦, 等. 发光学报, 2019, 40(8), 949. 9 Yu M. Journal of Functional Materials, 2020, 51(5), 5082(in Chinese). 于嫚.功能材料, 2020, 51(5), 5082. 10 Lian L, Zheng M, Zhang W,et al. Advanced Science, 2020, 7(11), 2000195. 11 Wang J, Datta K, Li J,et al. Advanced Energy Materials, 2020, 10(22), 2000566 12 Wu H Y, Tang J X, Li Y Q.Acta Physica Sinica, 2020, 69(13),306(in Chinese). 吴海妍, 唐建新, 李艳青.物理学报, 2020, 69(13),306. 13 Li C, Lu X, Ding W, et al. Acta Crystallographica Section B, 2008, 64(6), 702. 14 Green M A, Ho-Baillie A, Snaith H J.Nature Photonics, 2014, 8(7), 506. 15 Yang J, Yuan Q, Yakobson B I.Journal of Physical Chemistry C,2016,120, 24682. 16 Stam W V D, Geuchies J J, Altantzis T,et al. Journal of the American Chemical Society, 2017, 139(11), 4087. 17 Lin H, Zhou C, Tian Y,et al. ACS Energy Letters, 2017,2018(3), 54. 18 Zhang Y, Wang J, Ghosez P. Physical Review Letters, 2020, 125(15), 157601. 19 Yu Y, Zhang D, Yang P.Nano Letters, 2017, 17(9), 5489. 20 Yang J H, Yin W J, Park J S, et al. Journal of Materials Chemistry A, 2016, 4(34), 13105. 21 Even J, Pedesseau L, Jancu J,et al. Journal of Physical Chemistry Letters, 2013, 4(17), 2999. 22 Du M.Journal of Materials Chemistry, 2014, 2(24), 9091. 23 Amat A, Mosconi E, Ronca E,et al. Nano Letters, 2014, 14(6), 3608. 24 Frost J M, Butler K T, Brivio F,et al. Nano Letters,2014,14(5),2584. 25 Onoda-Yamamuro N, Yamamuro O, Matsuo T,et al. Journal of the Phy-sics & Chemistry of Solids, 1992, 53(2), 277. 26 Wang Y, Ye G, Chen H,et al. Journal of Materials Chemistry A, 2015, 3(29), 15292. 27 Mao L, Teicher S M L, Stoumpos C C, et al. Journal of the American Chemical Society, 2019, 141(48), 19099. 28 Li G, Zhang T, Guo N, et al. Angewandte Chemie International Edition, 2016, 55(43), 13460. 29 Kepenekian M, Robles R, Katan C, et al.ACS Nano,2015,9(12),11557. 30 Li X, Hoffman J, Ke W, et al. Journal of the American Chemical Society, 2018, 140(38), 12226. 31 Katan C, Pedesseau L, Kepenekian M, et al. Journal of Materials Che-mistry, 2015, 3(17),9232. 32 Qian J Y. Theoretical study on perovskite solar cell materials. Ph.D.Thesis, Jilin University, China,2019(in Chinese). 钱靖宇. 钙钛矿太阳能电池材料的理论研究.博士学位论文,吉林大学,2019. 33 Yuan H D, Zhou L, Su J, et al. Chinese Optics, 2019, 12(5), 1048(in Chinese). 袁海东, 周龙, 苏杰, 等.中国光学, 2019, 12(5), 1048. 34 Kim J, Lee S H, Lee J H, et al. Journal of Physical Chemistry Letters, 2014, 5(8), 1312. 35 Wang L, Wu T H, Cui D Y, et al. Materials Reports B:Research Papers, 2020,34(1),2001(in Chinese). 王磊, 吴天昊, 崔丹钰, 等. 材料导报:研究篇, 2020,34(1),2001. 36 Bi F Z, Zheng X, Ren Z Y. Acta Physico-Chimica Sinica, 2019, 35(1), 69(in Chinese). 毕富珍, 郑晓, 任志勇.物理化学学报, 2019, 35(1), 69. 37 Luo D, Yang W, Wang Z,et al. Science, 2018, 360(6396), 1442. 38 Krishna B G, Ghosh D S, Tiwari S. Solar Energy, 2021, 224, 1369. 39 An S C, Huang X, Chen P R, et al. Materials Reports A:Review Papers, 2020, 34(2), 3069. 安世崇, 黄茜, 陈沛润, 等.材料导报:综述篇, 2020, 34(2), 3069. 40 Dong L K, Ding M L, Zhuang Z S, et al. Materials Reports A:Review Papers, 2020, 34(4), 7053(in Chinese). 董丽卡,丁明乐,庄志山, 等.材料导报:综述篇,2020,34(4),7053. 41 Bai X G, Shi Y T, Wang K, et al. Acta Physico-Chimica Sinica, 2015, 31(2), 285(in Chinese). 白晓功, 史彦涛, 王开, 等.物理化学学报, 2015, 31(2), 285. 42 Tan Z K, Moghaddam R S, Lai M L,et al. Nature Nanotechnology, 2014, 9(9), 687. 43 Ishihara T, Takahashi J, Goto T. Physical Review B: Condensed Matter, 1990, 42(17), 11099. 44 Proppe A H, Wei M, Chen B, et al. Journal of the American Chemical Society, 2019, 141(36), 14180. 45 Mao L, Stoumpos C C, Kanatzidis M G.Journal of the American Chemical Society, 2019, 141(3),1171. 46 Yuan M, Quan L N, Comin R,et al. Nature Nanotechnology, 2016, 11(10), 872. 47 Bi W, Cui Q, Jia P, et al. ACS Applied Materials & Interfaces, 2019, 12(1), 1721. 48 Qi X, Zhang Y, Ou Q, et al. Small, 2018, 14(31), 1800682. 49 Xi Y Y, Han Y, Li G H, et al. Acta Physical Sinica,2021,69(16),23. 郤育莺, 韩悦, 李国辉, 等. 物理学报, 2021,69(16),23. 50 Ahmad S, Kanaujia P K, Beeson H J,et al. ACS Applied Materials & Interfaces, 2015,7(45), 25227. 51 Song J, Xu L, Li J,et al. Advanced Materials, 2016, 28(24), 4861. 52 Wu J H, Li Y M, Shi J J, et al. Acta Physico-Chimica Sinica, 2021, 37(4), 135(in Chinese). 吴炯桦,李一明,石将建,等.物理化学学报, 2021, 37(4), 135.