Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 16-22    https://doi.org/10.11896/j.issn.1005-023X.2017.05.003
  材料综述 |
钙钛矿太阳能电池:从高效率到稳定性*
万婷婷, 朱安康, 郭友敏, 汪春昌
安徽大学物理与材料科学学院, 合肥 230601
Perovskite Solar Cells: From High Efficiency to Stability
WAN Tingting, ZHU Ankang, GUO Youmin, WANG Chunchang
School of Physics and Materials Science, Anhui University, Hefei 230601
下载:  全 文 ( PDF ) ( 1496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳能电池(Perovskite solar cells, PSCs)由于制备工艺简单、价格便宜、转换效率高、可制备柔性器件等优点引起广泛关注。近年来,钙钛矿太阳能电池的转换效率不断被刷新,迅速实现了对多晶硅太阳能电池的超越,使其具有巨大的商业潜力。然而,稳定性成为阻碍钙钛矿太阳能电池商业化的一大问题。介绍了钙钛矿太阳能电池的结构,综述了钙钛矿太阳能电池所取得的研究进展,总结了获得高效率钙钛矿太阳能电池的方法,重点分析了提高钙钛矿太阳能电池稳定性的策略,并指出钙钛矿太阳能电池的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万婷婷
朱安康
郭友敏
汪春昌
关键词:  太阳能电池  钙钛矿材料  传输材料  稳定性  高效率    
Abstract: Perovskite solar cells (PSCs) have attracted much attention because of its simple process, low cost, high efficiency and flexibility for devices. The conversion efficiency of perovskite solar cells has been constantly renewed in recent years. Due to its higher efficiency compared to polycrystalline silicon solar cells, perovskite solar cells have enormous potential for commercial application. However, the stability of perovskite solar cells still need further improvement. According to recent progress on perovskite solar cells, this paper describes the construction of PSCs, places emphasis on the approaches to obtaining high efficiency perovskite solar cells, and summarizes the appropriate strategies to improve the stability of perovskite solar cells. The trends in development of pero-vskite solar cells are proposed as well.
Key words:  solar cell    perovskite material    transporting material    stability    high efficiency
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TQ174  
基金资助: 安徽大学引进人才科研建设费(J01006029)
通讯作者:  郭友敏:,女,1984年生,博士,教授,研究方向为新能源材料与技术 E-mail:youminguo@ahu.edu.cn   
作者简介:  万婷婷:女,1992年生,硕士研究生,研究方向为新能源材料的开发与制备 E-mail:gym19840815@163.com
引用本文:    
万婷婷, 朱安康, 郭友敏, 汪春昌. 钙钛矿太阳能电池:从高效率到稳定性*[J]. 《材料导报》期刊社, 2017, 31(5): 16-22.
WAN Tingting, ZHU Ankang, GUO Youmin, WANG Chunchang. Perovskite Solar Cells: From High Efficiency to Stability. Materials Reports, 2017, 31(5): 16-22.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.003  或          http://www.mater-rep.com/CN/Y2017/V31/I5/16
1 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J Am Chem Soc,2009,131:6050.
2 Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science,2016,359(6294):58.
3 Yang W S, Noh J H, Jeon N J, et al. High-performance photovol-taic perovskite layers fabricated through intramolecular exchange [J]. Science,2015,348:1234.
4 Bai Y B, Wang Q Y, Lu R T, et al. Progress on perovskite-based solar cells[J]. Chin Sci Bull, 2016,61(Z1):489(in Chinese).
白宇冰,王秋莹,吕瑞涛,等.钙钛矿太阳能电池研究进展[J].科学通报,2016,61(Z1):489.
5 Wang Y X, Luo J, Guo P C, et al. Application and development of hybird perovskite materials in the field of solar cells[J]. J Inorg Mater,2015,30(7):673(in Chinese).
王艳香,罗俊,郭平春,等.杂化钙钛矿材料在太阳电池中的应用与发展[J].无机材料学报,2015,30(7):673.
6 Yao Xin, Ding Y L, Zhang X D, et al. A review of the perovskite solar cells[J]. Acta Phys Sin,2015,64(3):038805
7 Zhao Y, Li H, Guan L L, Wu J D, et al. Perovskite solar cells: History and latest researche[J]. Mater Rev: Rev,2015,29(6):17(in Chinese).
赵雨,李惠,关雷雷,等.钙钛矿太阳能电池技术发展历史与现状[J].材料导报:综述篇,2015,29(6):17.
8 Green M A, Ho Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photon,2014,8:506.
9 Wang D, Wright M, Elumalai N K, et al. Stability of perovskite solar cells [J]. Sol Energy Mater Sol Cells,2016,147:255.
10 Wang B, Xiao X, Chen T. Perovskite photovoltaics: A high-efficiency newcomer to the solar cell family [J]. Nanoscale,2014,6:12287.
11 Ju C G, Zhang B, Feng Y Q. Organolead halide perovskite solar cells[J]. Prog Chem,2016(2):219(in Chinese).
琚成功,张宝,冯亚青.有机卤化铅钙钛矿太阳能电池[J]. 化学进展,2016(2):219
12 Zhou H P, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science,2014,345:542.
13 Wojciechowski K, Saliba M, Leijtens T, et al. Sub-150 ℃ processed meso-superstructured perovskite solar cells with enhanced efficiency [J]. Energy Environ Sci,2014,7:1142.
14 Im J H, Jang I H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nat Nanotechnol,2014,9:927.
15 Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photon,2014,8:133.
16 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale,2011,3:4088.
17 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep,2012,2:591.
18 Liu M Z,Johnston M B,Snaith H J.Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501:395.
19 Im J H, Kim H S, Park N G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3[J]. APL Mater,2014,2:081510.
20 Chen C W, Kang H W, Hsiao S Y, et al. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition[J]. Adv Mater,2014,26:6647.
21 Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc,2014,136:622.
22 Zhao Y X, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition [J]. J Am Chem Soc,2014,136:12241.
23 Zhao Y X, Zhu K. Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite [J]. J Mater Chem A,2015,3:9086.
24 Ding H J, Ni Lu, Ma S B, et al. Progress in electron-transport materials in application of perovskite solar cells[J]. Acta Phys Sin,2015,64:038802(in Chinese).
丁雄傑,倪露,马圣博,等.钙钛矿太阳能电池中电子传输材料的研究进展[J].物理学报,2015,64:038802.
25 Conings B, Baeten L, Jacobs T, et al. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar he-terojunction perovskite solar cells [J]. APL Mater,2014,2:081505.
26 Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells [J]. Nano Lett,2014,14:724.
27 Xiao Z, Dong Q, Bi C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement [J]. Adv Mater,2014,26:6503.
28 Qin P, Domanski A L, Chandiran A K, et al. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells [J]. Nanoscale,2014,6:1508.
29 Shao Y, Yuan Y, Huang J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells [J]. Nat Energy,2016,1:15001.
30 Yang Y, Gao J, Cui J R, et al. Research progress of perovskite solar cells[J]. J Inorg Mater,2015,30(11):1311(in Chinese).
杨英,高菁,崔嘉瑞,等.钙钛矿太阳能电池的研究进展[J]. 无机材料学报,2015,30(11):1311
31 Song Z H, Wang S R, Xiao Y, et al. Progress of research on new hoie transporting materials used in perovskite solar cells[J]. Acta Phys Sin,2015,64(3):1(in Chinese).
宋志浩,王世荣,肖殷,等.新型空穴传输材料在钙钛矿太阳能电池中的研究进展[J].物理学报,2015,64(3):1.
32 Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells: Improved hole conductivity with copper iodide[J]. J Am Chem Soc,2014,136:758.
33 Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency [J]. Nat Commun,2014,5:3834
34 Zhu Z L, Bai Y, Zhang T, et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar pe-rovskite solar cells [J]. Angew Chem,2014,126:12779.
35 Liu C,Yuan S,Zhang H L,et al.p-type CuI films grown by iodination of copper and their application as hole transporting layer for inverted perovskite solar cells[J]. J Inorg Mater,2016,31:358(in Chinese).
刘畅,苑帅,张海良,等.铜膜碘化法制备p型CuI薄膜及其用作空穴传输层的反型钙钛矿电池性能[J].无机材料学报,2016,31(4):358.
36 Yin X T, Chen P, Que M D, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts [J]. ACS Nano,2016,10:3630.
37 Chandiran A K, Yella A, Mayer M T, et al. Sub-nanometer conformal TiO2 blocking layer for hgh efficiency solid-state perovskite absorber solar cells[J]. Adv Mater,2014,26:4309.
38 Ogomi Y, Kukihara K, Qing S, et al. Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells[J]. Chem Phys Chem,2014,15:1062.
39 Dong J, Zhao Y H, et al. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification [J]. Chem Commun,2014,50:13381.
40 Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells [J]. Adv Mater,2014,26:4107.
41 Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells [J]. Energy Environ Sci,2013,6:3249.
42 Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett,2013,13:1764.
43 Smith I C, Hoke E T, Solis Ibarra D, et al. A layered hybrid pero-vskite solar-cell absorber with enhanced moisture stability[J]. Angew Chem Int Ed,2014,53:11232.
44 Cao D H, Stoumpos C C, Farha O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. J Am Chem Soc,2015,137:7843.
45 Kagan C R, Mitzi D B, Dimitrakopoulos C D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science,1999,286:945.
46 Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature,2016,536:312
47 Saparov B, Hong F, Sun J P, et al. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor[J]. Chem Mater,2015,27:5622.
48 Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell [J]. Adv Energy Mater,2015,5:1501310.
49 Li X, Ibrahim Dar M, Yi C, et al. Improved performance and stabi-lity of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides [J]. Nat Chem,2015,7:703.
50 Cui X M, Zuo C Y, Lan D J, et al. Preparation and electrical propertries of TiO2/SnO2 nanocrystalline films[J]. J Inorg Mater,2013,28(1):1233(in Chinese).
崔旭梅,左承阳,蓝德均,等.TiO2/SnO2纳米晶膜的制备及其电学性能研究[J].无机材料学报,2013,28(1):1233.
51 Pathak S K, Abate A, Ruckdeschel P, et al. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2 [J]. Adv Funct Mater,2014,24:6046.
52 Song J, Zheng E, Bian J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J]. J Mater Chem A,2015,3:10837.
53 Zhang M, Lyu M Q, Yu H, et al. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter [J]. Chemistry—A Eur J,2015,21:434.
54 Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer [J]. Adv Mater,2015,27:695.
55 You J B, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers [J]. Nat Nanotechnol,2016,11:75.
56 Guarnera S, Abate A, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer [J]. J Phys Chem Lett,2015,6:432.
57 Ito S, Tanaka S, Manabe K, et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells [J]. J Phys Chem C,2014,118:16995.
58 Zheng L L, Chung Y H, Ma Y Z, et al. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability[J]. Chem Commun,2014,50:11196.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[5] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[6] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[7] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[8] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[9] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[10] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[11] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[12] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[13] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[14] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[15] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed