Research Progress of Flexible Transparent Conductive Film Based on Metal Mesh
HUANG Bing1,2 , LIU Ping2,*
1 School of Physics,University of Electronic Science and Technology of China,Chengdu 610054, China 2 College of Electron and Information Engineering,University of Electronic Science and Technology of China Zhongshan Institute,Zhongshan 528402, Guangdong, China
Abstract: Developments in flexible electronic devices have led to development of flexible displays, solar cells and sensors. Particularly, flexible transpa-rent conductive films (TCFs) form an indispensable part of flexible electronic devices and the demand for these conductive films will increase in the future. At present, scalable, lightweight, flexible, stretchable, and low-cost optoelectronic devices are desired. Indium tin oxide (ITO) is the most widely used TCFs. However, ITO is brittle in addition to requiring complication preparation process. More importantly, indium is a rare metal, which is scarce and expensive. Therefore, substitutes exhibiting high performance for use in flexible TCFs should be developed. Researchers have developed a variety of flexible TCFs that can replace ITO, and films based on metal mesh have demonstrated great potential. These films have demonstrated excellent photoelectric properties and mechanical flexibility. The line width and spacing of the metal mesh can be changed independently, thus granting a better ability to adjust trade-off between square resistance and transmittance of the film. Many reports have detailed the development of metal mesh-based flexible TCFs with performances, which are comparable to ITO. Most of these reports prepare master plates by photolithography. Consequently, this preparation is combined with electroless plating or electrodeposition to make conductive films. Flexible TCFs prepared by photolithography have good performance. However, photolithography is complicated and expensive. Some reports have detailed the preparation of flexible TCFs using additive manufacturing, electrostatic spinning, photonic sintering, and template method. The flexible TCFs fabricated using additive manufacturing have been commercialized for touchscreen applications and are expected to be developed further. In this paper, progress in preparation and optoelectronic device applications of metal mesh TCFs is reviewed. Specifically, the photoelectric properties, manufacturing technology, and device applications of metal mesh TCFs and the drawback of these preparation methods are discussed. This paper provides a reference for future research in the TCFs domain.
通讯作者: *刘萍,电子科技大学中山学院电子信息学院教授、硕士研究生导师,2002年毕业于三峡大学物理系,获物理学学士学位。2005年毕业于广西师范大学物理与信息工程学院,获物理学硕士学位。2008年6月毕业于上海交通大学物理系,获物理学博士学位。2013年11月进入电子科技大学物理电子学专业从事博士后研究。目前主要研究方向为光电材料与器件。主持国家自然科学基金2项、省级项目5项;在Scientific Reports、Nanoscale Research Letters、Journal of Materials Science、Chinese Physics B等国内外期刊上发表论文50余篇。liuping49@126.com
黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
HUANG Bing , LIU Ping. Research Progress of Flexible Transparent Conductive Film Based on Metal Mesh. Materials Reports, 2023, 37(5): 21030214-12.
1 Bädeker K. Annals of Physics, 1907, 22, 749. 2 Lee H B, Jin W Y, Ovhal M M, et al. Journal of Materials Chemistry C, 2019, 7(5), 1087. 3 Brutting W, Frischeisen J, Schmidt T D, et al. Physica Status Solidi A-Applications and Materials Science, 2013, 210(1), 44. 4 Yang K, Hu Z Q, Wang H Q, et al. Journal of Dalian Dalian Polytechnic University, 2014, 33(2), 135. 杨坤, 胡志强, 王海权, 等. 大连工业大学学报, 2014, 33(2), 135. 5 Kumar A, Zhou C W. ACS Nano, 2010, 4(1), 11. 6 Backes C, Abdelkader A M, Alonso C, et al. 2d Materials, 2020, 7(2), 282. 7 Zhu Z R, Geng W M, Zhu Q X, et al. Nanotechnology, 2021, 32(1), 13. 8 Wang Y X, Liu P, Zeng B Q, et al. Nanoscale Research Letters, 2018, 13, 10. 9 Wang Y X, Liu P, Wang H H, et al. Journal of Materials Science, 2019, 54(3), 2343. 10 Han S, Chae Y, Kim J Y, et al. Journal of Materials Chemistry C, 2018, 6(16), 4389. 11 Chang L, Zhang X Q, Ding Y, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 29010. 12 Wang S, Tian Y H, Wang C X, et al. Composites Science and Technology, 2019, 174, 76. 13 Hwang Y, Choi J, Kim J W, et al. Scientific Reports, 2020, 10(1), 8. 14 Liu P, Wang J H, Cheng J, et al. Surface Review and Letters, 2020, 27(7), 7. 15 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666. 16 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5(8), 574. 17 Kobayashi T, Bando M, Kimura N, et al. Applied Physics Letters, 2013, 102(2), 4. 18 Iijima S. Nature, 1991, 354(6348), 56. 19 Bethune D S, Kiang C H, Devries M S, et al. Nature, 1993, 363(6430), 605. 20 Iijima S, Ichihashi T. Nature, 1993, 363(6430), 603. 21 Li X S, Wang Y M, Yin C R, et al. Journal of Materials Chemistry C, 2020, 8(3), 849. 22 Nguyen D T, Youn H. ACS Applied Materials & Interfaces, 2019, 11(45), 42469. 23 Lee J, Lee P, Lee H, et al. Nanoscale, 2012, 4(20), 6408. 24 Ding S, Jiu J T, Tian Y H, et al. Physical Chemistry Chemical Physics, 2015, 17(46), 31110. 25 Chiang C, Fincher C, Park Y, et al. Physical Review Letters, 1977, 39(17), 1098. 26 Xia Y J, Sun K, Ouyang J Y. Advanced Materials, 2012, 24(18), 2436. 27 Sun K, Zhang S P, Li P C, et al. Journal of Materials Science-Materials in Electronics, 2015, 26(7), 4438. 28 Zhang L, Yang K, Chen R, et al. Advanced Electronic Materials, 2020, 6(1), 8. 29 Wu F L, Li P C, Sun K A, et al. Advanced Electronic Materials, 2017, 3(7), 10. 30 Zhou L, Yu M J, Chen X L, et al. Advanced Functional Materials, 2018, 28(11), 7. 31 Keum C, Murawski C, Archer E, et al. Nature Communications, 2020, 11(1), 9. 32 Bai S C, Guo X Z, Chen T R, et al. Composites Part a-Applied Science and Manufacturing, 2020, 139, 8 33 Ji Y X, Yang J, Luo W, et al. ACS Applied Materials & Interfaces, 2018, 10(11), 9571. 34 Lee J Y, Connor S T, Cui Y, et al. Nano Letters, 2008, 8(2), 689. 35 Rogers J A, Someya T, Huang Y G. Science, 2010, 327(5973), 1603. 36 Kang M G, Guo L J. Advanced Materials, 2007, 19(10), 1391. 37 Lin K M, Shinde S. Journal of Materials Science-Materials in Electronics, 2021, 32(5), 5690. 38 Zhou H, Song Y. ACS Applied Materials & Interfaces, 2021, 13(3), 3493. 39 Singh S B, Hu Y B, Kshetri T, et al. Journal of Materials Chemistry C, 2017, 5(17), 4198. 40 Singh S B, Singh T I, Kim N H, et al. Journal of Materials Chemistry A, 2019, 7(17), 10672. 41 Song S, Cho S M. Korean Journal of Chemical Engineering, 2021, 38(8), 1720. 42 Chen X L, Wu X Z, Shao S S, et al. Scientific Reports, 2017, 7, 8. 43 Jung J, Cho H, Choi S H, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 15773. 44 Gu W B, Cui Z. In: 6th Electronic System-Integration Technology Conference (ESTC). Grenoble, France, 2016. 45 Khan A, Lee S, Jang T, et al. Small, 2016, 12(22), 3021. 46 Li L J, Zhang B, Zou B H, et al. ACS Applied Materials & Interfaces, 2017, 9(45), 39110. 47 Qiu T F, Luo B, Akinoglu E M, et al. Advanced Functional Materials, 2020, 30(31), 8. 48 Zhou H Y, Mao H D, Meng X C, et al. Organic Electronics, 2019, 75, 8. 49 Yi F S, Bi Y G, Gao X M, et al. Organic Electronics, 2020, 87, 7 50 Zhang B, Lee H D, Byun D. Advanced Engineering Materials, 2020, 22(5), 8. 51 Ye T, Jun L, Kun L, et al. Organic Electronics, 2017, 41, 179. 52 Zhu X Y, Xu Q, Li H K, et al. Advanced Materials, 2019, 31(32), 9. 53 Meng X C, Xu Y F, Wang Q X, et al. Langmuir, 2019, 35(30), 9713. 54 Wang Z, Kang Y, Zhao S C, et al. Advanced Materials, 2020, 32(3), 15. 55 Cui Z, Gao Y L. SID Symposium Digest of Technical Papers, 2015, 46(1), 398. 56 Chen X L, Nie S H, Guo W R, et al. Advanced Electronic Materials, 2019, 5(5), 1800991. 57 Lee J H, Chung B, Park S, et al. Macromolecular Research, 2018, 26(2), 157. 58 Muzzillo C P, Reese M O, Mansfield L M. ACS Applied Materials & Interfaces, 2020, 12(23), 25895. 59 Yu S, Han H J, Kim J M, et al. ACS Nano, 2017, 11(4), 3506. 60 Chen C, Liu Y H, Zhu M, et al. Organic Electronics, 2020, 77, 7. 61 Yang J, Bao C X, Zhu K, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 1996. 62 Walia S, Singh A K, Rao V S G, et al. Bulletin of Materials Science, 2020, 43(1), 8. 63 Kiruthika S, Kulkarni G U. Solar Energy Materials and Solar Cells, 2017, 163, 231. 64 Khan A, Huang Y T, Miyasaka T, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 8083. 65 Jiang Z, Fukuda K, Xu X M, et al. Advanced Materials, 2018, 30(36), 7. 66 Han Y F, Chen X L, Wei J F, et al. Advanced Science, 2019, 6(22), 11. 67 Chen D Z, Fan G, Zhang H X, et al. Nanomaterials, 2019, 9(7), 13. 68 Zhang W H, Xiong J, Wang S, et al. Journal of Power Sources, 2017, 337, 118. 69 Zhong Z Y, Ko P, Youn H, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(6), 1711. 70 Wang J, Chen X L, Jiang F Y, et al. Solar Rrl, 2018, 2(9), 10. 71 Pozov S M, Schider G, Voigt S, et al. Flexible and Printed Electronics,2019, 4(2), 11. 72 Peng C Y, Chen C B, Guo K P, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2017, 87, 118. 73 Gedda M, Das D, Iyer P K, et al. Materials Research Express, 2020, 7(5), 7. 74 Han J W, Jung B, Kim D W, et al. Organic Electronics, 2019, 73, 13. 75 Yi F S, Bi Y G, Zhang X L, et al. IEEE Transactions on Nanotechnology, 2019, 18, 776.