Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20070075-11    https://doi.org/10.11896/cldb.20070075
  高分子与聚合物基复合材料 |
可溶液加工对称A-D-A有机小分子太阳能电池给体材料研究进展
范鸿志, 阿拉腾宝力格*, 阿拉塔, 宁君, 塔娜, 特古斯
内蒙古师范大学物理与电子信息学院,内蒙古自治区功能材料物理与化学重点实验室,呼和浩特 010022
Research Progress of Solution-Processable Symmetric A-D-A Small Molecule Donor Materials for Organic Solar Cells
FAN Hongzhi, ALTAN Bolag*, Alata, NING Jun, Tana, Tegusi
Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
下载:  全 文 ( PDF ) ( 8281KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 20世纪以来,随着科技的进步和人类社会的发展,非再生传统化石能源日渐短缺,并且化石能源的使用也带来各种环境污染问题。因此,开发绿色无污染的新能源已成为世界各国研究的重点。基于硅等无机半导体材料的传统太阳能电池不仅生产工艺复杂,成本过高,而且会引起环境污染问题。近10年来,有机小分子太阳能电池的研究和应用发展迅速,其因优异的光电转换性能受到学者们的广泛关注。目前基于小分子材料的有机太阳能电池的光电转换效率最高已达到16%~17%。
   给体材料是太阳能电池活性层中的重要组成部分,不仅是小分子太阳能电池研究的关键基础,也是有机光伏器件未来产业化应用需要考虑的关键。选择合适的电子给体小分子与电子受体材料进行有效结合,可以优化器件的光吸收能力和调节电化学能级匹配度,是提高太阳能电池光电转化效率的关键。目前有机小分子给体材料主要分为非对称型电子推拉结构和对称型给体-受体-给体(或受体-给体-受体结构)。其中,以噻吩衍生物为主的对称结构小分子因其优异共轭平面性、高电荷传输率和可修饰性分子结构等优点而备受关注。
   本文主要对可溶液加工对称结构小分子太阳能电池给体材料进行了归纳总结,主要有寡聚噻吩类、苯并二噻吩类、吡咯并吡咯二酮类、二噻吩并噻咯类和卟啉类给体材料等。通过阐述已有对称小分子给体材料的研究进展,对比分析各种小分子给体材料的优缺点,展望小分子给体材料在有机光伏领域中的发展趋势和研究前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范鸿志
阿拉腾宝力格
阿拉塔
宁君
塔娜
特古斯
关键词:  小分子太阳能电池  给体材料  活性层  光电转换效率    
Abstract: Since the 20th century, with the advancement of science and technology, the shortage of traditional fossil energy has brought a series of environmental problems and the development of pollution-free renewable energy has become a hot-topic research all over the world. Traditio-nal solar cells based on inorganic semiconducting materials such as silicon, have demerits of complicated production process, highcost and environmental pollution. In the past decades, the research of organic small molecule solar cells with good photoelectric performance have received extensive attention in the field of organic photovoltaics, presenting huge potential in modern photoelectrical applications.At present, the power conversion efficiency of organic solar cells based on small molecules have been boosted over 16%—17%.
As an important part of the active layer in organic solar cells, electron donor materials are key components for further industrial application in organic photovoltaics. Solution-processable small molecule donor materials effectively combined with electron acceptor materials are able to not only optimize the light absorption capacity of the device but also adjust the electrochemical energy level of both materials, which is critical to improve the photoelectric conversion efficiency of solar cells. At present, organic small molecule donor materials can be classified into asymmetric electron push-pull molecule and symmetric donor-acceptor-donor (or acceptor-donor-acceptor molecule, A-D-A molecule). Among them, symmetrical molecules based on thiophene derivatives have get much attention due to their good conjugated planar structure, high charge transfer mobility and molecular structure modifiability.
In this paper, solution-processable donor materials with symmetric A-D-A structures, including oligopolythiophene, benzodithiophene, diketopyrrolopyrrole, dithienosilole and porphyrin donor materials, are summarized. The aim of this paper is to expound the research progress of existing donor materials, compare and analyze the advantages and disadvantages of various small molecule donor materials, and forecast the development trend and research prospect of small molecule donor materials in the field of organic photovoltaics.
Key words:  small molecule solar cell    donor material    active layer    power conversion efficiency
发布日期:  2022-05-24
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(21762033);内蒙古自然科学基金( 2021MS02025 ; 2021MS05047);中国人社部高层次留学人才回国资助项目;内蒙古师范大学高层次人才引进项目(2015YJRC001)
通讯作者:  altan.bolag@imnu.edu.cn   
作者简介:  范鸿志,2017年6月毕业于聊城大学,获得工学学士学位。现为内蒙古师范大学物理与电子信息学院研究生,在阿拉腾宝力格研究员的指导下进行研究。目前主要研究领域为有机薄膜太阳能电池的材料合成与应用。
阿拉腾宝力格,内蒙古师范大学物理与电子信息学院研究员、硕士研究生导师。2005年7月本科毕业于哈尔滨理工大学电气与电子信息工程学院,2012年3月在日本东京工业大学物质电子化学专业取得博士学位,2012—2015年分别在日本东京工业大学和瑞士日内瓦大学进行博士后研究工作。目前主要从事有机光电子材料与器件的研究工作。
引用本文:    
范鸿志, 阿拉腾宝力格, 阿拉塔, 宁君, 塔娜, 特古斯. 可溶液加工对称A-D-A有机小分子太阳能电池给体材料研究进展[J]. 材料导报, 2022, 36(10): 20070075-11.
FAN Hongzhi, ALTAN Bolag, Alata, NING Jun, Tana, Tegusi. Research Progress of Solution-Processable Symmetric A-D-A Small Molecule Donor Materials for Organic Solar Cells. Materials Reports, 2022, 36(10): 20070075-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070075  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20070075
1 Li G, Zhu R, Yang Y. Nature Photonics, 2012, 6, 153.
2 Meyer F. Progress in Polymer Science, 2015, 47, 70.
3 Michael G. Nature, 2001, 414, 338.
4 Zhang T H, Piao L Y, Zhao S L, et al. Chinese Journal of Organic Chemistry, 2011, 31(2), 260 (in Chinese).
张天慧,朴玲钰,赵谡玲,等.有机化学,2011, 31(2), 260.
5 Ragoussi M E, Torres T. Chemical Communications, 2015, 51, 3957.
6 Freitag M, Teuscher J, Saygili Y, et al. Nature Photonics, 2017, 11, 372.
7 Gong J W, Sumathy K, Qiao Q Q, et al. Renewable and Sustainable Energy Reviews, 2017, 68, 234.
8 Zhao J B, Li Y K, Yang G F, et al. Nature Energy, 2016, 1, 1.
9 Kim Y J, Baek J Y, Ha J J, et al. Journal of Materials Chemistry C, 2014, 2(25), 4937.
10 Kim Y J, Pake K H, Ha J J, et al. Physical Chemistry Chemical Physics, 2014, 6(37), 19874.
11 Su Y W, Lan S C, Wei K H. Materials Today, 2012, 15, 554.
12 Li G, Wang S H, Liu T, et al. Journal of Materials Chemistry C, 2018,6,12601.
13 He Z C, Zhong C M, Huang X, et al. Advanced Materials, 2011, 23, 4636.
14 Goh C, Kline R J, McGehee M D, et al. Applied Physics Letters, 2005, 86(122110), 1.
15 Thompson B C, Fréchet J M J. Angewandte Chemie International Edition, 2008, 47, 58.
16 Dong Y Y, Yang H, Wu Y, et al. Journal of Materials Chemistry A, 2019, 7, 2261.
17 Wu Q, Deng D, Zhou R M, et al. ACS Applied Materials & Interfaces, 2020, 12, 25100.
18 Sun R, Wu Y, Guo J, et al. Science China Chemistry, DOI: 10.1007/s11426-020-9753-x.
19 Wu Q, Deng D, Lu K, et al. Chinese Chemical Letters, 2017, 28, 2065.
20 Hu P R, Ouyang Y, Liang T, et al. Energy & Environmental Science, 2017, 10, 2017.
21 An Q S, Wang J, Gao W, et al. Science Bulletin, 2020, 65, 538.
22 Liu L, Kan Y Y, Gao K, et al. Advanced Materials, DOI: 10.1002/adma.201907604.
23 Shehzad R A, Iqbal J, Khan M U, et al. Computational and Theoretical Chemistry, 2020, 1181, 112833.
24 Cheng P, Li G, Zhan X W, et al. Nature Photonics, 2018, 12, 131.
25 Patra D, Huang T Y, Chiang C C, et al. ACS Applied Materials Interfaces, 2013, 5, 9494.
26 Hawks S A, Deledalle F, Yao J Z, et al. Advanced Energy Materials, 2013, 3, 1201.
27 Stoltzfus D M, Donaghey J E, Armin A, et al. Chemical Reviews, 2016, 116, 12920.
28 Miao J H, Meng B, Ding Z C, et al. Journal of Materials Chemistry A, 2020, 8, 10983.
29 Lin Y Z, Ma L C, Li Y F, et al. Advanced Energy Materials, 2014, 4(1), 1300626.
30 Du Z K, Chen W C, Chen Y H, et al. Journal of Materials Chemistry A, 2014, 2, 15904.
31 Huang H L, Chen H J, Long J, et al. Journal of Power Sources, 2016, 326, 438.
32 Ni W, Li M M, Kan B, et al. Organic Electronics, 2014, 15, 2285.
33 He G R, Li Z, Wan X J, et al. Journal of Materials Chemistry A, 2013, 1, 1801.
34 Chen Y S, Wan X J, Long G K. Accounts of Chemical Research, 2013, 46(11), 2645.
35 Chao P J, Liu L Z, Qu J F, et al. Dyes and Pigments, 2019, 162, 746.
36 Liu Y S, Wan X J, Wang F, et al. Advanced Energy Materials, 2011, 1, 771.
37 Li Z, He G R, Wan X J, et al. Advanced Energy Materials, 2012, 2, 74.
38 Kan B, Li M M, Zhang Q, et al. Journal of the American Chemical Society, 2015, 137, 3886.
39 Duan T N, Gao J, Xu T L, et al. Journal of Materials Chemistry A, 2020, 8, 5843.
40 Xu T L, Chang Y Y, Yan C Q, et al. Journal Name, 2020, 4(6), 2680.
41 Fitzner R, Mena-Osteritz E, Walzer K, et al. Advanced Functional Materials, 2015, 25(12), 1845.
42 Duan T A, Gao J, Babics M, et al. Solar RRL, 2020, 4(3), 1900472.
43 Farahat M E, Patra D, Lee C H, et al. ACS Applied Materials Interfaces, 2015, 7, 22542.
44 Zhou J Y, Wan X J, Liu Y S, et al. Journal of the American Chemical Society, 2012, 134, 16345.
45 Kan B, Zhang Q, Li M M, et al. Journal of the American Chemical Society, 2014, 136, 15529.
46 Zhang Z J, Miao J H, Ding Z C, et al. Nature Communications, 2019, 10, 3271.
47 Wang Z G, Xu X P, Li Z J, et al. Advanced Electronic Materials, 2016, 2, 1600061.
48 Sun K, Xiao Z Y, Lu S R, et al. Nature Communications, 2015, 6, 6013.
49 Tang H, Chen H Y, Yan C Q, et al. Advanced Energy Materials, 2020, 10(27), 2001076.
50 Qin J Z, An C B, Zhang J Q, et al. Science China Materials, 2020, 63, 1142.
51 Jung M, Seo D, Kwak K, et al. Dyes and Pigments, 2015, 115, 23.
52 Vegiraju S, Hsieh C M, Huang D Y, et al. Dyes and Pigments, 2016, 133, 280.
53 Lee J W, Choi Y S, Jo W H. Organic Electronics, 2012, 13, 3060.
54 Duan X W, Xiao M J, Chen J H, et al. ACS Applied Materials Interfaces, 2015, 7, 18292.
55 Zhang Y M, Tan H, Xiao M J, et al. Organic Electronics, 2014, 151, 173.
56 Privado M, Malhotra P, de la Cruz P, et al. Solar RRL, 2020, 4(4), 1900471.
57 Sun Y M, Welch G C, Leong W L, et al. Nature Materials, 2011, 11, 44.
58 Chen B, Yang Y, Cheng P, et al. Journal of Materials Chemistry A, 2015, 3, 6894.
59 Zhou J Y, Wan X J, Liu Y S, et al. Chemistry of Materials, 2011, 23, 4666.
60 Ni W, Li M M, Liu F, et al. Chemistry of Materials, 2015, 27, 6077.
61 Ye D D, Li X D, Yan L, et al. Journal of Materials Chemistry A, 2013, 1, 7622.
62 Li W, Deng W Y, Wu K L, et al. Journal of Materials Chemistry C, 2016, 4, 1972.
63 Huang C Y, Liao X F, Gao K, et al. Chemistry of Materials, 2018, 30, 5429.
64 Sun J, Ma X L, Zhang Z H, et al. Advanced Materials, 2018, 30(16), 1707150.
65 Yue W, Zhao Y, Shao S Y, et al. Journal of Materials Chemistry, 2009, 19, 2199.
66 Li M M, Ni W, Feng H R, et al. Chinese Journal of Chemistry, 2015, 33, 852.
67 Wessendorf C D, Schulz G L, Mishra A, et al. Advanced Energy Mate-rials, 2014, 4(14), 1400266.
68 Wang J L, Liu K K, Liu S, et al. ACS Applied Materials Interfaces, 2017, 9(23), 19998.
69 Bai H T, Wang Y F, Cheng P, et al. ACS Applied Materials Interfaces, 2014, 6, 8426.
70 Wang Y C, Chang M J, Kan B, et al. ACS Applied Energy Materials, 2018, 1, 2150.
71 Xia T, Li C, Ryu H S, et al. Chemistry-A European Journal, 2020, 26(54), 12411.
72 Gao K, Miao J S, Xiao L G, et al. Advanced Materials, 2016, 28, 4727.
73 Wang H D, Xiao L G, Yan L, et al. Chemical Science, 2016, 7, 4301.
74 Huang Y Y, Li L S, Peng X B, et al. Journal of Materials Chemistry, 2012, 22, 21841.
75 Qin H M, Li L S, Guo F Q, et al. Energy Environmental Science, 2014, 7, 1397.
76 Gao K, Li L S, Lai T Q, et al. Journal of the American Chemical Society, 2015, 137(23), 7282.
[1] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[2] 刘璋, 陈新亮, 侯国付, 李跃龙, 丁毅, 赵颖, 张晓丹. 高效钙钛矿太阳电池及其叠层电池研究进展[J]. 材料导报, 2021, 35(15): 15031-15046.
[3] 杨志春, 吴狄, 剡晓波, 蒋昭毅, 刘宗豪, 陈炜. 大面积钙钛矿薄膜制备技术的研究进展[J]. 材料导报, 2021, 35(1): 1046-1057.
[4] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[5] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[6] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[7] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[8] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed