Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20080040-8    https://doi.org/10.11896/cldb.20080040
  无机非金属及其复合材料 |
石墨烯/硅肖特基结界面优化研究进展
李成1, 李绍元1,*, 马文会1, 陈秀华2, 刘家森2, 王琦迪1, 陶继尧1
1 昆明理工大学冶金与能源工程学院,真空冶金国家工程研究中心,昆明 650093
2 云南大学材料科学与能源学院,昆明 650091
Research Progress on Interface Optimization of Graphene/Silicon Schottky Junction
LI Cheng1, LI Shaoyuan1,*, MA Wenhui1, CHEN Xiuhua2, LIU Jiasen2, WANG Qidi1, TAO Jiyao1
1 National Engineering Research Center for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Techno-logy, Kunming 650093, China
2 School of Materials and Energy, Yunnan University, Kunming 650091, China
下载:  全 文 ( PDF ) ( 6800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在各种商业太阳能电池中,传统硅基太阳能电池由于其原材料丰富、制作工艺成熟等优势,在全球光伏市场中占据着主导地位。但是传统硅基太阳能电池在生产过程中需要高温扩散或者离子注入形成p-n结等原因使其成本高于常规能源,并且这个过程能耗高同时对环境造成污染,与清洁能源的目标相矛盾。因此,进一步降低光伏发电成本,一直是人们所追求的目标。
近年来,石墨烯/硅(Gr/Si)肖特基结太阳能电池因其工艺简单且有望实现低成本器件制备而备受关注。石墨烯具有透光率高、导电性好等特点,可作为此类太阳能电池中光生载流子分离的活性层和透明电极。同时石墨烯的导电性可通过化学掺杂或增加石墨烯薄膜层数得以提高。当前,界面工程、化学掺杂、减反薄膜等技术的引入使石墨烯/硅(Gr/Si)肖特基结太阳能电池的光电转换效率在短短几年就从1.65%提高到16.61%(接近传统硅基太阳能电池的水平),说明石墨烯/硅(Gr/Si)肖特基结太阳能电池具有巨大的发展潜力。但是硅表面存在大量的悬挂键和缺陷,这些表面态可以充当电子的俘获和复合中心,极大地增加了硅表面载流子复合速率,造成费米能级钉扎、肖特基势垒降低,不利于器件性能的提升。通过Gr/Si界面优化,降低界面复合,提高电池开路电压(VOC)从而优化电池性能的思路成为当前的研究热点之一。
本文归纳了绝缘层钝化、硅表面化学基团钝化和空穴传输层插入等主流的Gr/Si界面优化机理和研究进展,为制备高效率和高稳定性的石墨烯/硅肖特基太阳能电池提供一定的参考和指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李成
李绍元
马文会
陈秀华
刘家森
王琦迪
陶继尧
关键词:  石墨烯    肖特基结  太阳能电池  界面优化    
Abstract: Among all kinds of commercial solar cells, traditional silicon-based solar cells occupy a leading position in the global photovoltaic market due to their advantages such as abundant raw materials and mature production technology etc. However, the production of traditional silicon-based solar cells requires high temperature diffusion or ion implantation to form p-n junction, leading to the higher cost than conventional energy. Moreover, this process consumes high energy and causes environmental pollution, contradicting the goal of clean energy. Therefore, to further reduce the cost of photovoltaic power generation has been the goal that people are pursuing.
Recent years, graphene/silicon (Gr/Si) Schottky junction solar cells have attracted much attention because of its simple technology and potential for low-cost device fabrication. With the characteristics of high light transmittance and good electrical conductivity, graphene can be used as the active layer and transparent electrode for the separation of photogenerated carriers in such solar cells. Moreover, the electrical conductivity of graphene can be improved by chemical doping or increasing the number of graphene film layers. At present, through the introduction of interface engineering, chemical doping, antireflection film and other technologies, the conversion efficiency of graphene/silicon (Gr/Si) Schottky junction solar cells has increased from 1.65% to 16.61% (closing to the level of traditional silicon-based solar cells), showing great potential for development. However, there are a large number of suspension bonds and defects exist on the silicon surface, these surface states can act as electron capture and recombination centers. This characteristic greatly increases the recombination rate of the silicon surface carriers, resulting in pinning of Fermi level and reduction of Schottky potential barrier, which is not conducive to the improvement of device performance. The optimization scheme of cell performance through optimizing the Gr/Si interface, reducing the interface recombination and improving the cell open-circuit voltage (VOC) has become one of the current research hotspots.
In this paper, the main Gr/Si interface optimization mechanisms and research progress, such as passivation of insulating layer, passivation of chemical groups on silicon surface and insertion of hole transport layer are systematically summarized, which provides a certain reference and guidance for the preparation of high efficiency and high stability graphene/silicon Schottky solar cells.
Key words:  graphene    silicon    Schottky junction    solar cell    interface optimization
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(61764009;51762043;51974143);国家重点研发计划(2018YFC1901801;2018YFC1901805);云南省重大科技专项(202102AB080016; 202103AA080004; 202202AB080010)
通讯作者:  * lsy415808550@163.com   
作者简介:  李成,2019年6月毕业于安徽工业大学,获得工学学士学位与经济学学士双学位。现为昆明理工大学冶金与能源学院、真空冶金国家工程实验室硕士研究生,在马文会教授和李绍元教授的指导下进行研究。目前主要研究领域为新型硅基太阳能电池。
李绍元,2009年本科毕业于燕山大学材料物理专业,2014年博士毕业于昆明理工大学有色金属冶金专业,2014年7月进入昆明理工大学冶金与能源工程学院任教,先后于2015年、2019年破格晋升副教授、教授职称。研究兴趣主要围绕:(1)冶金法提纯金属硅新技术开发;(2)功能材料制备及其在能量转换与存储领域应用;(3)高效太阳能电池技术;(4)环境治理及资源综合回收等。先后主持国家自然科学基金项目4项,主持云南省优秀青年基金、云南省重大科技专项、云南省重点项目、青年项目以及省级人才培养项目、国家重点实验室课题项目等10项;先后申请发明专利30余项,获授权发明专利14项,合作出版英文专著1部,以第一作者或通讯作者在国内外高水平期刊发表SCI学术论文50余篇。先后入选全国高校冶金院长奖、云南省万人计划青年拔尖人才、云南省青年托举人才等。
引用本文:    
李成, 李绍元, 马文会, 陈秀华, 刘家森, 王琦迪, 陶继尧. 石墨烯/硅肖特基结界面优化研究进展[J]. 材料导报, 2022, 36(21): 20080040-8.
LI Cheng, LI Shaoyuan, MA Wenhui, CHEN Xiuhua, LIU Jiasen, WANG Qidi, TAO Jiyao. Research Progress on Interface Optimization of Graphene/Silicon Schottky Junction. Materials Reports, 2022, 36(21): 20080040-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080040  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20080040
1 Xi F, Li S, Ma W, et al. Hydrometallurgy, 2021, 201, 10553.
2 Shanmugam M, Durcan C A, Yu B. Nanoscale, 2012, 4(23),7399.
3 Ye Y, Dai L, Wu P C, et al. Nanotechnology, 2009, 20(37),375202.
4 Kim D W, Sung Y J, Park J W, et al. Thin Solid Films, 2001, 398, 87.
5 Tang J, Wang X, Brzozowski L, et al. Advanced materials, 2010, 22(12), 1398.
6 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
7 Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446(7131), 60.
8 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology, 2008, 3(9),563.
9 Tung V C, Allen M J, Yang Y Y,et al. Nature Nanotechnology, 2009, 4(1),25.
10 Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007, 45(7),1558.
11 Li X, Cai W, An J, et al. Science, 2009, 324(5932),1312.
12 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323),549.
13 Sheehy D E, Schmalian J. Physical Review B, 2009, 80(19), 193411.
14 Morozov S V, Novoselov K S, Katsnelson M I, et al. Physical Review Letters, 2008, 100(1), 016602.
15 Mayorov A S, Gorbachev R V, Morozov S V, et al. Nano Letters, 2011, 11(6), 2396.
16 Scarpa F, Adhikari S, Phani A S. Nanotechnology, 2009, 20(6), 065709.
17 Suk J W, Piner R D, An J, et al. ACS Nano, 2010, 4(11), 6557.
18 Borini S, White R, Wei D, et al. ACS Nano, 2013, 7(12),11166.
19 Hou C, Wang H, Zhang Q, et al. Advanced Materials, 2014, 26(29),5018.
20 Yin Z, Sun S, Salim T, et al. ACS Nano, 2010, 4(9),5263.
21 Xuan W, Zhi L, Müllen K. Nano Letters, 2008, 8(1),323.
22 Xia F, Mueller T, Lin Y, et al. Nature Nanotechnology, 2009, 4(12), 839.
23 Furchi M, Urich A, Pospischil A, et al. Nano Letters, 2012, 12(6), 2773.
24 Wu J, Agrawal M, Becerril H A, et al. ACS Nano, 2009, 4(1), 43.
25 Han T H, Lee Y, Choi M R, et al. Nature Photonics, 2012, 6(2), 105.
26 Li X, Zhu H, Wang K, et al. Advanced Materials, 2010, 22(25), 2743.
27 Shin D H, Kwak G Y, Kim J M, et al. Journal of Alloys and Compounds, 2019, 773, 913.
28 Shi E, Li H, Yang L, et al. Nano Letters, 2013, 13(4), 1776.
29 Rehman M A, Roy S B, Akhtar I, et al. Carbon, 2019, 148, 187.
30 Gan X, Lyu R, Zhu H, et al. Journal of Materials Chemistry A, 2016, 4(36), 13795.
31 Wang F, Kozawa D, Miyauchi Y, et al. Nature Communications, 2015, 6, 6305.
32 Yavuz S, Loran E M, Sarkar N, et al. ACS Applied Materials & Interfaces, 2018, 10(43), 37181.
33 Ding K, Zhang X, Ning L, et al. Nano Energy, 2018, 46, 257.
34 Zhao J, Ma F J, Ding K, et al. Applied Surface Science, 2017,10,163.
35 Won U Y, Ly T H, Kim Y R, et al. Nano Energy, 2018, 53,398.
36 Yang X, Cheng C, Du S, et al. ACS Nano, 2016, 10(5),4895.
37 Bartolomeo A D. Physics Reports,2016,606,1.
38 Li X, Zhu H. Physics Today,2016, 69(9),46.
39 Cheung S K, Cheung N W. Applied Physics Letters, 1986, 49(2),85.
40 Yang L, Yu X, Xu M, et al. Journal of Materials Chemistry A, 2014, 2(40),16877.
41 Card H C, Rhoderick E H. Journal of Physics D: Applied Physics, 1971, 4(10),1589.
42 Song Y, Li X, Mackin C, et al. Nano Letters, 2015, 15(3),2104.
43 Zhong M, Xu D, Yu X, et al. Nano Energy, 2016, 28, 12.
44 Alnuaimi A, Almansouri I, Saadat I, et al. Solar Energy, 2018, 164, 174.
45 Alnuaimi A, Almansouri I, Saadat I, et al. RSC Advances, 2018, 8(19),10593.
46 Rehman M A, Akhtar I, Choi W, et al. Carbon, 2018, 132, 157.
47 Jiao K, Wang X,Wang Y, et al. Journal of Materials Chemistry C, 2014, 2(37), 7715.
48 Yang L, Yu X, Xu M, et al. Journal of Materials Chemistry A, 2014, 2(40),16877.
49 Zhang X, Xie C, Jie J, et al. Journal of Materials Chemistry A, 2013, 1(22), 6593.
50 Brus V V, Gluba M A, Zhang X, et al. Solar Energy, 2014, 107, 74.
51 Maldonado S, Knapp D, Lewis N S. Journal of the American Chemical Society, 2008, 130(11), 3300.
52 Bashouti M Y, Pietsch M, Brönstrup G, et al. Progress in Photovoltaics Research & Applications, 2015, 22(10),1050.
53 Xie C, Zhang X, Wu Y, et al. Journal of Materials Chemistry A, 2013, 1(30), 8567.
54 Shockley W, Read W T. Physical Review, 1952, 87(5), 835.
55 Duttagupta S, Lin F, Wilson M, et al. Progress in Photovoltaics Research and Applications, 2014, 22(6),641.
56 Ueda K, Takano A. Surface Science, 1993,278-288,506.
57 Xu D, Yu X, Yang L, et al. Superlattices and Microstructures, 2016, 99, 3.
58 Geng C, Shang Y, Qiu J, et al. Journal of Alloys and Compounds, 2020,835,155268.
59 Diao S, Zhang X, Shao Z, et al. Nano Energy, 2017,31, 359.
60 Lee J, Menamparambath M M, Hwang J, et al. Chemsuschem, 2015, 8(14),2358.
61 Li M H, Hsu C W, Shen P S, et al. Chemical Communications, 2015, 51(85),15518.
62 Bach U, Lupo D, Comte P, et al. Nature, 1998, 395(6702),583.
63 Xu D, Yu X, Gao D, et al. Journal of Materials Chemistry A, 2016, 4, 11284.
64 Meng J, Liu X, Zhang X, et al. Nano Energy, 2016, 28, 44.
65 Ma J, Bai H, Zhao W, et al. Solar Energy, 2018, 160, 76.
66 Tsuboi Y, Wang F, Kozawa D, et al. Nanoscale, 2015, 7(34), 14476.
67 Jiao K, Duan C, Wu X, et al. Physical Chemistry Chemical Physics, 2015, 17(12), 8182.
68 Kang S B, Kwon K C, Choi K S, et al. Nano Energy, 2018, 50, 649.
[1] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[2] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[3] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[4] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[5] 吕建伟, 张洪亮, 张戈, 李纪岩. 硅酸锂混合溶液浸泡对石灰岩集料耐磨性能的影响[J]. 材料导报, 2022, 36(Z1): 21120243-8.
[6] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[7] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[8] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[9] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[10] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[11] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[12] 戴飞亮, 付子恩, 蒋金博, 涂伟萍. 有机硅(碳)嵌段共聚物的合成及其应用研究进展[J]. 材料导报, 2022, 36(9): 20070144-12.
[13] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[14] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[15] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed