Research Progress on Interface Optimization of Graphene/Silicon Schottky Junction
LI Cheng1, LI Shaoyuan1,*, MA Wenhui1, CHEN Xiuhua2, LIU Jiasen2, WANG Qidi1, TAO Jiyao1
1 National Engineering Research Center for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Techno-logy, Kunming 650093, China 2 School of Materials and Energy, Yunnan University, Kunming 650091, China
Abstract: Among all kinds of commercial solar cells, traditional silicon-based solar cells occupy a leading position in the global photovoltaic market due to their advantages such as abundant raw materials and mature production technology etc. However, the production of traditional silicon-based solar cells requires high temperature diffusion or ion implantation to form p-n junction, leading to the higher cost than conventional energy. Moreover, this process consumes high energy and causes environmental pollution, contradicting the goal of clean energy. Therefore, to further reduce the cost of photovoltaic power generation has been the goal that people are pursuing. Recent years, graphene/silicon (Gr/Si) Schottky junction solar cells have attracted much attention because of its simple technology and potential for low-cost device fabrication. With the characteristics of high light transmittance and good electrical conductivity, graphene can be used as the active layer and transparent electrode for the separation of photogenerated carriers in such solar cells. Moreover, the electrical conductivity of graphene can be improved by chemical doping or increasing the number of graphene film layers. At present, through the introduction of interface engineering, chemical doping, antireflection film and other technologies, the conversion efficiency of graphene/silicon (Gr/Si) Schottky junction solar cells has increased from 1.65% to 16.61% (closing to the level of traditional silicon-based solar cells), showing great potential for development. However, there are a large number of suspension bonds and defects exist on the silicon surface, these surface states can act as electron capture and recombination centers. This characteristic greatly increases the recombination rate of the silicon surface carriers, resulting in pinning of Fermi level and reduction of Schottky potential barrier, which is not conducive to the improvement of device performance. The optimization scheme of cell performance through optimizing the Gr/Si interface, reducing the interface recombination and improving the cell open-circuit voltage (VOC) has become one of the current research hotspots. In this paper, the main Gr/Si interface optimization mechanisms and research progress, such as passivation of insulating layer, passivation of chemical groups on silicon surface and insertion of hole transport layer are systematically summarized, which provides a certain reference and guidance for the preparation of high efficiency and high stability graphene/silicon Schottky solar cells.
李成, 李绍元, 马文会, 陈秀华, 刘家森, 王琦迪, 陶继尧. 石墨烯/硅肖特基结界面优化研究进展[J]. 材料导报, 2022, 36(21): 20080040-8.
LI Cheng, LI Shaoyuan, MA Wenhui, CHEN Xiuhua, LIU Jiasen, WANG Qidi, TAO Jiyao. Research Progress on Interface Optimization of Graphene/Silicon Schottky Junction. Materials Reports, 2022, 36(21): 20080040-8.
1 Xi F, Li S, Ma W, et al. Hydrometallurgy, 2021, 201, 10553. 2 Shanmugam M, Durcan C A, Yu B. Nanoscale, 2012, 4(23),7399. 3 Ye Y, Dai L, Wu P C, et al. Nanotechnology, 2009, 20(37),375202. 4 Kim D W, Sung Y J, Park J W, et al. Thin Solid Films, 2001, 398, 87. 5 Tang J, Wang X, Brzozowski L, et al. Advanced materials, 2010, 22(12), 1398. 6 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666. 7 Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446(7131), 60. 8 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology, 2008, 3(9),563. 9 Tung V C, Allen M J, Yang Y Y,et al. Nature Nanotechnology, 2009, 4(1),25. 10 Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007, 45(7),1558. 11 Li X, Cai W, An J, et al. Science, 2009, 324(5932),1312. 12 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323),549. 13 Sheehy D E, Schmalian J. Physical Review B, 2009, 80(19), 193411. 14 Morozov S V, Novoselov K S, Katsnelson M I, et al. Physical Review Letters, 2008, 100(1), 016602. 15 Mayorov A S, Gorbachev R V, Morozov S V, et al. Nano Letters, 2011, 11(6), 2396. 16 Scarpa F, Adhikari S, Phani A S. Nanotechnology, 2009, 20(6), 065709. 17 Suk J W, Piner R D, An J, et al. ACS Nano, 2010, 4(11), 6557. 18 Borini S, White R, Wei D, et al. ACS Nano, 2013, 7(12),11166. 19 Hou C, Wang H, Zhang Q, et al. Advanced Materials, 2014, 26(29),5018. 20 Yin Z, Sun S, Salim T, et al. ACS Nano, 2010, 4(9),5263. 21 Xuan W, Zhi L, Müllen K. Nano Letters, 2008, 8(1),323. 22 Xia F, Mueller T, Lin Y, et al. Nature Nanotechnology, 2009, 4(12), 839. 23 Furchi M, Urich A, Pospischil A, et al. Nano Letters, 2012, 12(6), 2773. 24 Wu J, Agrawal M, Becerril H A, et al. ACS Nano, 2009, 4(1), 43. 25 Han T H, Lee Y, Choi M R, et al. Nature Photonics, 2012, 6(2), 105. 26 Li X, Zhu H, Wang K, et al. Advanced Materials, 2010, 22(25), 2743. 27 Shin D H, Kwak G Y, Kim J M, et al. Journal of Alloys and Compounds, 2019, 773, 913. 28 Shi E, Li H, Yang L, et al. Nano Letters, 2013, 13(4), 1776. 29 Rehman M A, Roy S B, Akhtar I, et al. Carbon, 2019, 148, 187. 30 Gan X, Lyu R, Zhu H, et al. Journal of Materials Chemistry A, 2016, 4(36), 13795. 31 Wang F, Kozawa D, Miyauchi Y, et al. Nature Communications, 2015, 6, 6305. 32 Yavuz S, Loran E M, Sarkar N, et al. ACS Applied Materials & Interfaces, 2018, 10(43), 37181. 33 Ding K, Zhang X, Ning L, et al. Nano Energy, 2018, 46, 257. 34 Zhao J, Ma F J, Ding K, et al. Applied Surface Science, 2017,10,163. 35 Won U Y, Ly T H, Kim Y R, et al. Nano Energy, 2018, 53,398. 36 Yang X, Cheng C, Du S, et al. ACS Nano, 2016, 10(5),4895. 37 Bartolomeo A D. Physics Reports,2016,606,1. 38 Li X, Zhu H. Physics Today,2016, 69(9),46. 39 Cheung S K, Cheung N W. Applied Physics Letters, 1986, 49(2),85. 40 Yang L, Yu X, Xu M, et al. Journal of Materials Chemistry A, 2014, 2(40),16877. 41 Card H C, Rhoderick E H. Journal of Physics D: Applied Physics, 1971, 4(10),1589. 42 Song Y, Li X, Mackin C, et al. Nano Letters, 2015, 15(3),2104. 43 Zhong M, Xu D, Yu X, et al. Nano Energy, 2016, 28, 12. 44 Alnuaimi A, Almansouri I, Saadat I, et al. Solar Energy, 2018, 164, 174. 45 Alnuaimi A, Almansouri I, Saadat I, et al. RSC Advances, 2018, 8(19),10593. 46 Rehman M A, Akhtar I, Choi W, et al. Carbon, 2018, 132, 157. 47 Jiao K, Wang X,Wang Y, et al. Journal of Materials Chemistry C, 2014, 2(37), 7715. 48 Yang L, Yu X, Xu M, et al. Journal of Materials Chemistry A, 2014, 2(40),16877. 49 Zhang X, Xie C, Jie J, et al. Journal of Materials Chemistry A, 2013, 1(22), 6593. 50 Brus V V, Gluba M A, Zhang X, et al. Solar Energy, 2014, 107, 74. 51 Maldonado S, Knapp D, Lewis N S. Journal of the American Chemical Society, 2008, 130(11), 3300. 52 Bashouti M Y, Pietsch M, Brönstrup G, et al. Progress in Photovoltaics Research & Applications, 2015, 22(10),1050. 53 Xie C, Zhang X, Wu Y, et al. Journal of Materials Chemistry A, 2013, 1(30), 8567. 54 Shockley W, Read W T. Physical Review, 1952, 87(5), 835. 55 Duttagupta S, Lin F, Wilson M, et al. Progress in Photovoltaics Research and Applications, 2014, 22(6),641. 56 Ueda K, Takano A. Surface Science, 1993,278-288,506. 57 Xu D, Yu X, Yang L, et al. Superlattices and Microstructures, 2016, 99, 3. 58 Geng C, Shang Y, Qiu J, et al. Journal of Alloys and Compounds, 2020,835,155268. 59 Diao S, Zhang X, Shao Z, et al. Nano Energy, 2017,31, 359. 60 Lee J, Menamparambath M M, Hwang J, et al. Chemsuschem, 2015, 8(14),2358. 61 Li M H, Hsu C W, Shen P S, et al. Chemical Communications, 2015, 51(85),15518. 62 Bach U, Lupo D, Comte P, et al. Nature, 1998, 395(6702),583. 63 Xu D, Yu X, Gao D, et al. Journal of Materials Chemistry A, 2016, 4, 11284. 64 Meng J, Liu X, Zhang X, et al. Nano Energy, 2016, 28, 44. 65 Ma J, Bai H, Zhao W, et al. Solar Energy, 2018, 160, 76. 66 Tsuboi Y, Wang F, Kozawa D, et al. Nanoscale, 2015, 7(34), 14476. 67 Jiao K, Duan C, Wu X, et al. Physical Chemistry Chemical Physics, 2015, 17(12), 8182. 68 Kang S B, Kwon K C, Choi K S, et al. Nano Energy, 2018, 50, 649.