Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20070144-12    https://doi.org/10.11896/cldb.20070144
  高分子与聚合物基复合材料 |
有机硅(碳)嵌段共聚物的合成及其应用研究进展
戴飞亮1,*, 付子恩1, 蒋金博1, 涂伟萍2
1 广州市白云化工实业有限公司,广州 510080
2 华南理工大学化学与化工学院,广州 510630
Research Progress of the Organosilicone Segmented Copolymer's Preparation and Application
DAI Feiliang1,*, FU Zien1, JIANG Jinbo1, TU Weiping2
1 Guangzhou Baiyun Chemical Industry Co., Ltd., Guangzhou 510080, China
2 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510630, China
下载:  全 文 ( PDF ) ( 4165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比于传统碳系高分子材料,有机硅高分子材料分子骨架结构中硅氧键的高键能、大键角,使其具有更突出的耐高低温、耐老化以及低温柔韧性等优势,并被大量应用于国民经济的各行各业。然而由于其分子链普遍极性低,相互作用相对较弱,纯有机硅高分子材料因力学强度(如材料拉伸强度、低撕裂强度等)较低限制着其被更广泛应用。一方面通过物理共混添加补强填料可提高材料的力学强度,但受限于非分子尺度改善,其提升效果有限。另一方面利用嵌段化学反应可将传统高强度特性的碳系聚合物分子链引入有机硅链段,并形成有机硅(碳)嵌段共聚物,这是目前正在发展的有机硅材料改性的重要方法之一。有机硅嵌段共聚物是既含有机硅聚合物链段又含有机碳聚合物链段的杂化体;基于有机硅聚合物特性与有机碳聚合物通用性质,有机硅嵌段共聚物成为一种新型高分子材料。有机硅嵌段共聚物的合成是其发展与应用的前提,本文主要综述了近十几年来有机硅嵌段共聚物的合成方法。首先简单介绍了α,ω-双官能团封端聚二甲基硅氧烷的合成,接着重点论述了嵌段共聚物的一步合成法(离子聚合法、ATRP法、ROP聚合法与其他方法),然后阐述了以分别用聚氨酯、聚酯、聚酰胺、聚酰亚胺等与聚二甲基硅氧烷合成嵌段共聚物为代表的多步合成法,并在此基础上论述其理化性能或应用性能与结构的相关关系,另外对有机硅嵌段共聚物今后的发展进行了简单展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴飞亮
付子恩
蒋金博
涂伟萍
关键词:  聚二甲基硅氧烷  嵌段共聚物  微相分离  生物材料    
Abstract: Silicone polymer materials, compared with traditional carbon-based polymer materials, show outstanding advantages such as high and low temperature resistance, aging resistance and flexibility, which owe to high bond energy and large bond-angle of their molecular skeleton structure. Silicone polymer materials have been widely used in all walks of life in the national economy; however, low tensile strength and low tear strength restrict its application range to a certain extent. Although the mechanical strength could be improved through adding reinforcing fillers in physical blending, such improvements based on the non-molecular scale are relatively limited. The block copolymerization method can integrate two heterogeneous materials into one, and organosilicone segmented copolymer (OSSC) can be realized by using block chemical reactions to introduce traditional high-strength carbon polymer molecular chains into the organosilicon polymer segments. OSSCs are a hybrid with both silicone polymer segment and organic carbon polymer segment, and have gradually developed into a new type of polymer mate-rial combing the unique characteristics of silicone polymers and the general properties of organic carbon polymer. The synthesis of OSSC is the prerequisite for its deve-lopment and application. This article mainly reviews the synthesis and preparation methods of OSSCs in the last 10 years. Primarily it briefly introduces the preparation of the α,ω-reactive functionally terminated (telechelic) polydimethylsiloxane, and then focuses on the one-step synthesis method of block copolymer (such as ionic polymerization method, ATRP, ROP polymerization method, etc.). The multi-step synthesis methods of forming block copolymers through introducing polyurethane, polyester, polyamide, polyimide, etc. separately into polydimethylsiloxane are described, and the relationship between their physical/chemical properties (or application properties) and their structure is discussed. Finally, the development of OSSCs was prospected.
Key words:  polydimethylsiloxane    segmented copolymer    microphase separation    biomaterial
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB332  
基金资助: 广州市产业技术重大攻关计划(201902010023);广州市白云区创新创业领军团队(BYCX-创新)
通讯作者:  dai.fl@mail.scut.edu.cn   
作者简介:  戴飞亮,中级工程师。2013年7月本科毕业于南昌大学化学与化工学院,2016年7月在华南理工大学取得硕士研究生学位。主要从事有聚合物材料的研究与开发工作。近年来,在聚合物材料领域发表论文7篇与申请专利9项。
引用本文:    
戴飞亮, 付子恩, 蒋金博, 涂伟萍. 有机硅(碳)嵌段共聚物的合成及其应用研究进展[J]. 材料导报, 2022, 36(9): 20070144-12.
DAI Feiliang, FU Zien, JIANG Jinbo, TU Weiping. Research Progress of the Organosilicone Segmented Copolymer's Preparation and Application. Materials Reports, 2022, 36(9): 20070144-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070144  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20070144
1 Elsaber R, Mehl G H, Goodby J W, et al. Angewandte Chemie International Edition, 2001, 40(14),2688.
2 Voronkov M G, Yuzhelevskii Y A, Mileshkevich V P. Russian Chemical Reviews, 1975, 44(4),355.
3 Nakajima Y, Shimada S. RSC Advances, 2015, 5(26),20603.
4 Park S S, Park D H, Ha C S. Chemistry of Materials, 2007, 19(11),2709.
5 Qiao X F, Zhou J C, Xiao J W, et al. Nanoscale, 2012, 4(15),4611.
6 Li X, Zhou L, Wei Y, et al. Journal of the American Chemical Society, 2014, 136(42),15086.
7 Morariu S, Brunchi C E, Cazacu M, et al. Journal of Chemical & Engineering Data, 2011, 56(4),1468.
8 Zhu C, Yao R, Chen Y, et al. Journal of Colloid & Interface Science, 2018, 526(15),75.
9 Yilgor, Iskender, McGrath. Advances in Polymer Science, 1988, 86(6),81.
10 Li J N. Fine and Specialty Chemicals, 2012, 20(10),42(in Chinese).
李俊妮. 精细与专用化学品, 2012, 20(10),42.
11 Lu H X, Jiang B, Jiang H M, et al. Journal of Shanghai Jiaotong University, 2007, 41(10),1679.
12 Zhu D, Chen L Z, Liu H, et al. Journal of Petrochemical Universities, 2019, 32(3),1(in Chinese).
朱丹, 陈利贞, 刘辉, 等. 石油化工高等学校学报, 2019, 32(3),1.
13 Yilgor E, Yilgor I. Progress in Polymer Science, 2014, 39(6),1165.
14 Xing S M, Wang Y L. Synthetic technics and products application of organosilicone, Chemical Industry Press,China,2000,pp.331(in Chinese).
幸松民, 王一璐. 有机硅合成工艺及产品应用, 化学工业出版社, 2000,pp.331.
15 Ke Q N, Dai Z P, Chen C, et al. Chemical Industry and Engineering Progress, 2020, 39(3),992(in Chinese).
柯其宁, 代志鹏, 陈琛, 等. 化工进展, 2020, 39(3),992.
16 Brown D A, Price G J. Polymer, 2001, 42(10),4767.
17 Dong H, Matyjaszewski K. Macromolecules, 2010, 43(10),4623.
18 Rosati D, Perrin M Y, Navard P, et al. Macromolecules, 1998, 31(13),4301.
19 Martinelli E, Pelusio G, Yasani B R, et al. Macromolecular Chemistry and Physics, 2015, 216(21),2086.
20 Sun Y, Liu W. Polymer Bulletin, 2012, 68(7),1815.
21 Qu L, Huang G, Wang Q, et al. Journal of Polymer Science Part B Polymer Physics, 2008, 46(1),100.
22 Wang Y X, Li Y X, Zhang Q, et al. China Plastics Industry, 2009, 37(4),29(in Chinese).
王月欣, 李艳星, 张倩, 等. 塑料工业,2009,37(4),29.
23 Qu L, Xie Z, Huang G, et al. Journal of Polymer Science Part B Polymer Physics, 2008, 46(16),1652.
24 Boehm P, Mondeshki M, Frey H. Macromolecular Rapid Communications, 2012, 33(21),1861.
25 Ninago M D, Satti A J, Andres E C, et al. Journal of Polymer Science Part A Polymer Chemistry, 2010, 48(14),3119.
26 Moment A, Hammond P T. Polymer, 2001, 42(16),6945.
27 Yi L M, Zhan X L, Chen F Q, et al. Journal of Polymer Science Part A Polymer Chemistry, 2010, 43(19),4431.
28 Andres E C, Ciolino A E, Villar M A, et al. Journal of Polymer Science Part A Polymer Chemistry, 2010, 45(13),2726.
29 Xu Z, Zheng S. Polymer, 2007, 48(20),6134.
30 Ekin A, Webster D C. Macromolecules, 2006, 39(25),8659.
31 Rodwogin M D, Spanjers C S, Leighton C, et al. ACS Nano, 2010, 4(2),725.
32 Papadopoulos P, Floudas G, Schnell I, et al. Biomacromolecules,2006, 7(2),618.
33 Kotharangannagari V K, Sanchez F, Ruokolainen J, et al. Macromolecules, 2012, 45(4),1982.
34 Theogarajan L, Desai S, Baldo M, et al. Polymer International, 2010, 57(4),660.
35 Qin X S, Li Y C, Zhou F, et al. Applied Surface Science, 2015, 328(15),183.
36 Yildirim E, Yurtsever M, Yurtsever E, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22(3),604.
37 Emel Y G, Ekin A, Abdullah E, et al. Polymer, 2003, 44(26),7787.
38 Sheth J P, Aneja A, Wilkes G L, et al. Polymer, 2004, 45(20),6919.
39 Jignesh P, Sheth E, Yilgor B, et al. Polymer, 2005, 46(6),8185.
40 Pieper R J, Ekin A, Webster D C, et al. Journal of Coatings Technology and Research, 2007, 4(4),453.
41 Hernandez R, Weksler J, Padsalgikar A, et al. Journal of Biomedical Materials Research Part A, 2010, 87(2),546.
42 Ward R, Anderson J, Mcvenes R, et al. Journal of Biomedical Materials Research Part A, 2006, 77(3),580.
43 Antic V V, Govedarica M N, Djonlagic J. Polymer International, 2004, 53(11),1786.
44 Vuckovic M V, Antic V V, Dojcinovic B P, et al. Polymer International, 2006, 55(11),1304.
45 Frampton M B, Subczynska I, Zelisko P M. Biomacromolecules, 2010, 11(7),1818.
46 Frampton M B, Seguin J P, Jacqueline P, et al. Journal of Molecular Catalysis B-Enzymatic, 2013, 85(1),149.
47 Gill R, Mazhar M, Siddiq M. Polymer International,2010,59(12),1598.
48 Kang B, Park Y. Journal of Macromolecular Science Part D, 2010, 49(3),223.
49 Sharma B, Azim A, Azim H, et al. Macromolecules,2007,40(22),7919.
50 Palsule A, Poojari Y. Polymer, 2010, 51(26),6161.
51 Matsumoto T, Uchida T, Kishida A, et al. Journal of Applied Polymer Science, 1997, 64(69),1153.
52 Furuzono T. Journal of Biomaterials Science Polymer Edition, 1993, 5(1-2),89.
53 Furuzono T, Kishida A, Matsumoto T, et al. Adsorption of biomolecules onto multiblock copolymer consisting of aromatic polyamide and poly(dimethylsiloxane), Springer, Japan, 1996,pp.15
54 Ghosh A, Banerjee S, Hauber L, et al. Journal of Macromolecular Science Part A, 2010, 47(7),671.
55 Ghosh A, Banerjee S, Voit B. Journal of Macromolecular Science Part A, 2010, 47(11),1069.
56 Pei X L, Chen G F, Fang X Z. Journal of Applied Polymer Science, 2013, 129(6),3718.
57 Pei X L, Chen G F, Fang X Z. High Performance Polymers, 2011, 23(8),625.
58 Jiang X, Gu J, Shen Y, et al. Desalination, 2011, 265(1-3),74.
59 Jiang X, Gu J, Shen Y, et al. Journal of Applied Polymer Science, 2011, 119(6),3329.
60 Gong W, Zeng K, Wang L, et al. Polymer, 2008, 49(15),3318.
61 Rambarran T, Gonzaga F, Brook M A. Macromolecules, 2012, 45(5),2276.
62 Hamciuc V, Giurgiu D, Marcu M, et al. Journal of Macromolecular Science Part A, 1998, 35(4),563.
63 Rusu G I, Airinei A, Hamciuc V, et al. Journal of Macromolecular Science Part B, 2009, 48(2),238.
[1] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[2] 刘佳, 牛家嵘, 金欣, 朱正涛, 王闻宇. 淀粉类可吸收止血材料的研究进展[J]. 材料导报, 2022, 36(3): 21100136-8.
[3] 许秀娟, 杨凤怡, 黄皖卿, 祝雨虹, 梁筱峥, 刘潇钦, 晏梅, 周航, 李晓洲, 赵晚露, 艾华. 立足行业需求,助力生物材料创新发展[J]. 材料导报, 2022, 36(3): 22010204-7.
[4] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[5] 苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
[6] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[7] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[8] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[9] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[10] 王博成, 刘桅, 涂征, 吴崇刚, 石彪, 胡涛, 龚兴厚. 苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响[J]. 材料导报, 2019, 33(22): 3833-3836.
[11] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[12] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[13] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[14] 王勇, 李旭, 乔丽英, 陈毅. 纯镁表面NaMgF3膜层的制备及其耐腐蚀性能[J]. 材料导报, 2018, 32(22): 3925-3930.
[15] 马凤森,喻炎,章捷,陈海波. 生物材料细胞毒性评价研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 76-85.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed