Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20070135-8    https://doi.org/10.11896/cldb.20070135
  高分子与聚合物基复合材料 |
剪切增稠液体理论基础和工程应用进展概述
赵明媚, 张进秋*, 彭志召, 张建, 李欣
陆军装甲兵学院车辆工程系,北京 100072
Theoretical Basis and Engineering Application Progress of Shear Thickening Fluid
ZHAO Mingmei, ZHANG Jinqiu*, PENG Zhizhao, ZHANG Jian, LI Xin
Vehicle Engineering Department, Army Armored Force Academy, Beijing 100072, China
下载:  全 文 ( PDF ) ( 7085KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 剪切增稠液(STF)作为一种智能材料,在施加剪切应力或提高剪切速率条件下其表观黏度显著增加,可增加几倍至几十倍。实验室常见的剪切增稠液通常以无机氧化物为分散相、乙二醇或聚乙二醇为连续相,并混合部分添加剂制成。作为一种能快速感应外部刺激并做出响应的材料,剪切增稠液可在施加冲击后毫秒级的时间内,由液体向半固体进行转变,具有响应迅速、出力大、反复可逆等优点,因此在工程领域得到较多应用。
然而,剪切增稠液体的基础理论却无法对其当前的制备和应用提供明确指导,被学者广泛认可的堵塞理论只是对现象描述的一种统称,并未真正揭示剪切增稠现象的本质。同时剪切增稠液体的相关应用主要集中于剪切增稠液复合纤维领域,并面临在450~510 m/s以上的高速冲击下效果不理想的瓶颈。因此,近五年来除探究剪切增稠液体的机理外,研究者们主要从高速冲击实验条件下的测试和开发应用方面进行了不断尝试,并取得了丰硕的成果。
目前,解释剪切增稠现象的最新模型为接触流变理论,以接触动力学模拟、流变学和摩擦测量为基础,为连续剪切增稠行为(Continuous shear thickening)和非连续剪切增稠行为(Discontinuous shear thickening)提供支撑。在剪切增稠体系应用方面,研究者通过使用气枪、霍普金森压杆等手段进行高速冲击下的实验,对剪切增稠复合材料的失效模式进行分析,发现在高速条件下复合材料从拉力失效模式变为剪切失效模式。将剪切增稠液体应用于运动防护及生物医疗领域,并将剪切增稠液体与磁流变液等智能材料结合从而实现对伤害的实时评估。
本文归纳了剪切增稠液体的研究进展,着重分析了剪切增稠液体的理论机理,对剪切增稠液体在个体防护领域、振动控制领域及其他领域中的应用进行了总结,分析了在工程应用背景下剪切增稠体系面临的问题并对其前景进行了展望,以期为开发更稳定和效果更显著的剪切增稠液体相关器件提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵明媚
张进秋
彭志召
张建
李欣
关键词:  剪切增稠液体  智能材料  剪切增稠液复合纤维  个体防护    
Abstract: Shear thickening fluid (STF) is one of the categories of smart materials, whose viscosity increases considerably in the presence of shear strain or shear rate, which can increase several times to dozens of times. The fluids is prepared by dispersing hard metal oxide particles into a carrier fluid like ethylene glycol or polyethylene glycol, and adding stabilizer additives. The main feature of the fluids is the ability to change from liquid to semi-solid state just in a few milliseconds after applying an impact. It has such advantages of rapid response, large output, and reversible repetition that it has been widely used in the engineering field.
However, the basic theory of shear thickening liquid cannot provide clear guidance for the current preparation and application. The jamming theory, widely recognized by scholars, is only a general term for describing the phenomenon, and it does not really reveal the essence of shear thicke-ning. At the same time, the related applications of shear thickening liquid are mainly concentrated in the field of shear thickening fluids composite fibers, and face the bottleneck of unsatisfactory effect under high-speed impact of 450—510 m/s above. Therefore, in addition to exploring the mechanism of shear thickening fluids in the past five years, researchers have mainly tried from the aspects of testing and developing applications under experimental conditions under high-speed impact, and have achieved fruitful results.
At present, the latest model to explain the phenomenon of shear thickening is contact rheology, which is based on contact dynamics simulation, rheology, and friction measurement, and provides support for continuous shear thickening behavior (continuous shear thickening) and disconti-nuous shear thickening discontinuous shear thickening. In terms of the application of shear thickening systems, the researchers used air guns, Hopkinson pressure bars and other means to perform experiments under high-speed impact, analyzed the failure modes of shear thickening composites, and found that the composites under high-speed conditions change from tensile failure mode to shear failure mode. The shear thickening liquid is applied to sports protection and biomedical fields, and the shear thickening fluids is combined with smart materials such as magnetorheological fluid, to realize the assessment of injury.
This review summarizes the research progress of shear thickening fluids, focuses on analyzing the theoretical mechanism of shear thickening fluids, and summarizes the application in the field of personal protection, vibration control, and other fields. The problems of the shear thickening system in the context of engineering applications are analyzed and its prospects are prospected, with a view to providing a reference for the development of more stable and more effective shear-thickening fluid-related devices.
Key words:  shear thickening fluid (STF)    smart materials    shear thickening fluid composite fiber    personal protection
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB381  
基金资助: 国家自然科学基金(51605490);国家部委预研基金资助项目
通讯作者:  zhangjq63@163.com   
作者简介:  赵明媚,2016年6月毕业于解放军信息工程大学,获得工学学士学位。现为陆军装甲兵学院车辆工程系博士研究生,在张进秋教授的指导下进行研究。目前主要研究非牛顿流体及其开发应用。
张进秋,1984年于装甲兵工程学院获得车辆设计工程学士学位。此后,分别于2001年和2004年在哈尔滨工业大学获得工程力学硕士和博士学位。目前是陆军装甲兵学院车辆工程系教授、博士研究生导师。专注于智能材料和振动控制领域的研究,发表论文数十篇。
引用本文:    
赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
ZHAO Mingmei, ZHANG Jinqiu, PENG Zhizhao, ZHANG Jian, LI Xin. Theoretical Basis and Engineering Application Progress of Shear Thickening Fluid. Materials Reports, 2022, 36(9): 20070135-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070135  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20070135
1 Bahl S, Nagar H, Singh I, et al. Materials Today: Proceedings, 2020,28,1302.
2 Maurya K K, Rawat A, Jha G. Materials Today: Proceedings, 2020,33,4993.
3 Nasseri R, Deutschman C P, Han L, et al. Materials Today Advances, 2020, 5, 100055.
4 Ashtiani M, Hashemabadi S H, Ghaffari A. Journal of Magnetism and Magnetic Materials, 2015, 374, 716.
5 Gürgen S, Kuşhan M C, Li W. Progress in Polymer Science,2017,75,48.
6 Freundlich H, Röder H. Transactions of the Faraday Society, 1938, 34, 308.
7 Barnes H. Journal of Rheology, 1989, 33, 329.
8 Zhang S, Wang S, Wang Y, et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 197.
9 Sen S, Jamal M N B, Shaw A, et al. International Journal of Mechanical Sciences, 2019, 164,105174.
10 Santos T F, Santos C M S, Aquino M S, et al. Journal of Materials Research and Technology, 2019, 8, 4032.
11 Mawkhlieng U, Majumdar A. Composites Part B: Engineering, 2019, 175,107167.
12 Cao S, He Q, Pang H, et al. Smart Materials and Structures, 2018, 27(8),085013.
13 Hadde E K, Chen J. Journal of Food Engineering, 2019, 245, 18.
14 Liu M, Jian W, Wang S, et al. Smart Materials and Structures, 2018, 27(9),095012.
15 Chen K, Wang Y, Xuan S, et al. Journal of Colloid and Interface Science, 2017, 497, 378.
16 Ge J, Tan Z, Li W, et al. Results in Physics, 2017, 7, 3369.
17 Gong X, Chen Q, Liu M, et al. Smart Materials and Structures, 2017, 26(6),065017.
18 Gürgen S, Li W, Kuşhan M C. Materials & Design, 2016, 104, 312.
19 Gürgen S, Kuşhan M C. Polymer Testing, 2017, 64, 296.
20 Gürgen S, Sofuoğlu M A. Composite Structures,2019, 226,111236.
21 Kim Y, Park Y, Cha J, et al. Composite Structures, 2018, 204, 52.
22 Chatterjee V A, Verma S K, Bhattacharjee D, et al. Composite Structures, 2019, 225,111148.
23 Khodadadi A, Liaghat G, Vahid S, et al. Composites Part B: Enginee-ring, 2019, 162, 643.
24 Gillespie T. Journal of Colloid & Interface Science, 1966, 22, 554.
25 Hoffman R L. Transactions of the Society of Rheology, 1972, 16, 155.
26 Hoffman R L. Journal of Colloid & Interface Science, 1974, 46, 491.
27 Hoffman R L. Advances in Colloid & Interface Science, 1982, 17, 161.
28 Chen L B, Chow M K, Ackerson B J, et al. Langmuir, 1994, 10, 2817.
29 Chow M K, Zukoski C F. Journal of Rheology, 1995, 39, 15.
30 Chow M K, Zukoski C F. Journal of Rheology, 1995, 39, 33.
31 Hoffman R L. Journal of Rheology, 1998, 42, 111.
32 Bender J, Wager N J. Journal of Rheology, 1996, 40(5), 899.
33 Watanabe H, Yao M L, Osaki K, et al. Rheologica Acta, 1998, 37, 1.
34 Kalman D P, Wagner N J. Rheologica Acta, 2009, 48, 897.
35 Brady J F, Bossis G. Journal of Fluid Mechanics, 1985, 155, 105.
36 Wagner N J, Brady J F. Physics Today, 2009, 62, 27.
37 Bender J W, Wagner N J. Journal of Colloid & Interface Science, 1995, 172, 171.
38 Laun H, Bung R, Hess S, et al. Journal of Rheology, 1992, 36, 743.
39 Maranzano B J, Wagner N J. Journal of Chemical Physics, 2002, 117, 10291.
40 Phung T N, Brady J F, Bossis G. Journal of Fluid Mechanics,1996, 313, 181.
41 Singh A, Nott P R. Journal of Fluid Mechanics, 2000, 412, 279.
42 Head D A, Ajdari A, Cates M E. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 64, 061509.
43 Lootens D, Van Damme H, Hébraud P. Physical Review Letters, 2003, 90, 178301.
44 Donev A, Torquato S, Stillinger F H, et al. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 70, 043301.
45 Andreotti B, Barrat J L, Heussinger C. Physical Review Letters, 2012, 109, 105901.
46 Olsson P, Teitel S. Physical Review Letters, 2007, 99, 178001.
47 Varadan P, Solomon M J D. Journal of Rheology, 2003, 47, 943.
48 Hébraud P, Lootens D. Modern Physics Letters B, 2005, 19, 613.
49 Seto R, Mari R, Morris J F, et al. Physical Review Letters, 2013, 111, 218301.
50 Melrose J R, Ball R C. Journal of Rheology, 2004, 48, 937.
51 Melrose J R, Ball R C. Journal of Rheology, 2004, 48, 961.
52 Catherall A A, Melrose J R, Ball R C. Journal of Rheology,2000,44,1.
53 Pednekar S, Chun J, Morris J F. Soft Matter, 2017, 13, 1773.
54 Gopalakrishnan V, Zukoski C F. Journal of Rheology, 2004, 48, 1321.
55 Lin N Y C, Guy B M, Hermes M, et al. Physical Review Letters, 2015, 115, 228304.
56 Mari R, Seto R, Morris J F, et al. Journal of Rheology, 2014, 58, 1693.
57 Gürgen S, Kuşhan M C. Materials Science Forum, 2016, 880,132.
58 Cwalina C D, McCutcheon C M, Dombrowski R D, et al. Composites Science and Technology, 2016, 131, 61.
59 Balali E, Kordani N, Sadough V A. The Journal of the Textile Institute, 2017, 108, 376.
60 Majumdar A, Laha A. Textile Research Journal, 2016, 86, 2056.
61 Houghton J, Schiffman B, Kalman D, et al. Proceedings of SAMPE, 2007, 3, 1.
62 Egres Jr R, Lee Y, Kirkwood J, et al. In: Proceedings of the 4th International Conference of Safety and Protective Fabrics, Pittsburgh, 2004, pp. 1.
63 Baharvandi H R, Alebooyeh M, Alizadeh M, et al. Journal of Experimental Nanoscience, 2015, 4, 1.
64 Majumdar A, Butola B S, Srivastava A. Materials & Design, 2013, 51, 148.
65 Majumdar A, Butola B S, Srivastava A. Materials & Design, 2013, 46, 191.
66 Srivastava A, Majumdar A, Butola B S. Critical Reviews in Solid State & Materials Sciences, 2012, 37, 115.
67 Tan Z H, Zuo L, Li W H, et al. Materials & Design, 2016, 94, 105.
68 Haro E E, Odeshi A G, Szpunar J A. International Journal of Impact Engineering, 2016, 96, 11.
69 Wang Y, Li S K, Feng X Y. Applied Mechanics & Materials, 2015, 782, 153.
70 Asija N, Chouhan H, Gebremeskel S A, et al. International Journal of Impact Engineering, 2017, 110, 365.
71 Cao S, Chen Q, Wang Y, et al. Composites Part A: Applied Science and Manufacturing, 2017, 100, 161.
72 Park J L, Chi Y S, Kang T J. Textile Research Journal, 2013, 83, 471.
73 Fahool M, Sabet A R. International Journal of Impact Engineering, 2016, 90, 61.
74 Kordani N, Vanini A S, Amiri H. Polymers & Polymer Composites, 2016, 24, 281.
75 Mun S H, Son K J, Cho H K, et al. Journal of the Korea Institute of Military Science and Technology, 2016, 19, 330.
76 Ha-Minh C. Advanced Fibrous Composite Materials for Ballistic Protection, 2016, 16, 457.
77 Gürgen S, Kuşhan M C. Composites Part A: Applied Science and Manufacturing, 2017, 94, 50.
78 Albuja E H, Szpunar J A, Odeshi A G. Composites Part A, 2016, 87, 54.
79 Caglayan C, Osken I, Ataalp A, et al. Composite Structures, 2020, 243, 112171.
80 Zhou H, Yan L, Jiang W, et al. Journal of Intelligent Material Systems and Structures, 2016, 27, 208.
81 Wei M, Lin K, Liu H. Structural Control and Health Monitoring, 2019, 26, 2389.
82 Galindo-Rosales F J. Applied Sciences, 2016, 6,206.
83 Yeh F Y, Chang K C, Chen T W,et al. Journal of the Chinese Institute of Engineers, 2014, 37(8), 983.
84 Gürgen S. Thin-Walled Structures, 2020, 148, 106573.
85 Gürgen S, Sert A. Composites Part B: Engineering, 2019, 175, 107127.
86 Liu K, Cheng C F, Zhou L, et al. Journal of Power Sources, 2019, 423, 297.
87 Zhao C, Wang Y, Cao S, et al. Composites Science and Technology, 2019, 182,107782.
88 Liu M, Zhang S, Liu S, et al. Composites Part A Applied Ence & Manufacturing, 2019,126,105612.
89 Qin J, Guo B, Zhang L, et al. Composites Part B: Engineering, 2020, 183, 107686.
90 Ballantyne E L, Little D J, Wetzel E D. Sports Engineering, 2017, 20, 171.
91 Lammer H, Rosenkranz H, Kotze J, et al. US patent, US20090191989, 2009.
92 Holt S E, Perez M P. US patent, US S8679047 B2, 2011.
[1] 潘一, 徐明磊, 郭奇, 廖广志, 杨双春, Kantoma Daniel Bala. 钻井液智能堵漏材料研究进展[J]. 材料导报, 2021, 35(9): 9223-9230.
[2] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[3] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[4] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[5] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[6] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[7] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[8] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed