Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1969-1974    https://doi.org/10.11896/cldb.18050019
  无机非金属及其复合材料 |
纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能
魏明海1, 孙丽1,2, 张春巍3, 齐佩佩2, 朱洁2
1 大连理工大学土木工程学院,大连 116024
2 沈阳建筑大学土木工程学院,沈阳 110168
3 青岛理工大学土木工程学院,青岛 266520
Rheological Properties of Shear Thickening Fluid of Zirconia and SilicaNanoparticles Mixed System
WEI Minghai1, SUN Li1,2, ZHANG Chunwei3, QI Peipei2, ZHU Jie2
1 School of Civil Engineering, Dalian University of Technology, Dalian 116024
2 School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168
3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266520
下载:  全 文 ( PDF ) ( 3305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 剪切增稠液体(STF)是由微纳米颗粒均匀分散在某种分散剂中形成的一种新型纳米复合材料,当外界能量迫使其剪切速率超过某一定值后,STF粘度将非线性瞬时增大,表现出优异的耗能能力,从而起到缓冲、减振作用。本实验通过超声波技术和机械搅拌法制备不同质量分数配合比的纳米氧化锆(ZrO2)/氧化硅(SiO2)混合体系的剪切增稠液体(ZrO2/SiO2-STF),详细研究了ZrO2纳米颗粒对硅基剪切增稠液流变行为的影响。首先利用扫描电镜、X射线衍射仪以及能谱仪对纳米SiO2和ZrO2及ZrO2/SiO2粉末进行微观表征;然后利用旋转流变仪分别研究ZrO2的质量分数对纳米ZrO2/SiO2-STF稳态和动态流变性能的影响。微观研究表明,ZrO2/SiO2颗粒间具有显著的团聚效应;流变测试表明ZrO2/SiO2-STF体系具有显著的剪切增稠效应和剪切稀化行为,但不同颗粒间影响机制不同导致两种行为并不随着ZrO2质量分数的增加而增加。进一步研究表明,当纳米ZrO2质量分数为12%时,ZrO2/SiO2-STF体系的性能达到最优,此时,该体系不仅具有明显的剪切稀化行为,而且临界剪切增稠速率相对较小,表观粘度峰值较大。因此,所制备的ZrO2/SiO2-STF可为自适应结构提供更加有效的时变阻尼和刚度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏明海
孙丽
张春巍
齐佩佩
朱洁
关键词:  剪切增稠液体  二氧化锆  二氧化硅  储能模量  耗能模量    
Abstract: As a novel nano-composite materials, shear thickening fluid (STF) is composed of micro- and nano-particles distributed in a certain dispersant. When the external energy forces its shear rate to exceed a certain value, STF shows a nonlinear instant increase in viscosity and exhibits excellent energy dissipation capacity. Therefore, it can exert the effects of buffering and damping, which is able to be applied in energy absorption field. In this study, the ultrasonic technology and mechanical stirring were employed to prepare shear thickening fluid systems with various mass ratios of ZrO2 and SiO2. The microscopic characteristics of nano-SiO2, nano-ZrO2, and ZrO2/SiO2 powders were examined by scanning electron microscope, X-ray diffraction and energy dispersive spectrometer. Subsequently, the influence of the ZrO2 mass ratio on the steady and unsteady rheological properties of nano-ZrO2/SiO2-STF was investigated by rotating rheometer. The microscopic study results indicated that there was a significant agglomeration effect of ZrO2/SiO2 powder. The rheology tests showed that the ZrO2/SiO2-STF system exhibited notable shear thickening and thinning behaviors, nevertheless, these two behaviors were not enhanced by increasing mass of ZrO2 as the diffe-rent influence mechanism of the particles. It could be found from the further study that ZrO2/SiO2-STF system was endowed with the best properties with the nano-ZrO2 mass ratio of 12%. The system not only presented obvious shear thinning behavior, but also possessed a relatively low critical shear thickening rate and a large peak apparent viscosity. Accordingly, the ZrO2/SiO2-STF is able to provide more effective time-varying damping and stiffness for adaptive structures.
Key words:  shear thickening fluid    zirconium dioxide    silicon dioxide    storage modulus    consumption modulus
                    发布日期:  2019-05-31
ZTFLH:  O613.7  
基金资助: 国家自然科学基金(51578347;51608335); 中国博士后基金(2016M591432)
通讯作者:  sunli2009@163.com   
作者简介:  魏明海,大连理工大学博士后,沈阳建筑大学副教授,入选2018年度辽宁省“兴辽英才计划”青年拔尖人才项目。2008年9月至2012年7月,在哈尔滨工业大学获得结构工程专业工学博士学位,同时任职与沈阳建筑大学。以第一作者和通讯作者在国内外学术期刊上发表SCI检索论文14篇,授权国家发明专利6项。研究方向为智能材料与振动控制,主持包括国家自然科学基金青年项目、中国博士后科学基金面上项目等。孙丽,沈阳建筑大学教授,博士研究生导师。2006年3月毕业于大连理工大学,获防灾减灾工程及防护工程专业博士学位。2008—2009年香港理工大学访问学者,2012年新加坡南洋理工大学访问教授。2013年入选辽宁省百千万人才工程“百人层次”。已发表学术论文100余篇,被SCI收录46篇、被EI收录56篇;出版专著2部,参编著作1部。共获得国家级、省部级科技进步奖14项,其中国家科技进步二等奖一项,教育部科技进步一等奖一项。
引用本文:    
魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
WEI Minghai, SUN Li, ZHANG Chunwei, QI Peipei, ZHU Jie. Rheological Properties of Shear Thickening Fluid of Zirconia and SilicaNanoparticles Mixed System. Materials Reports, 2019, 33(12): 1969-1974.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050019  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1969
1 Waitukaitis S R, Jaeger H M. Nature, 2012, 487(7406), 205.
2 Tian T, Nakano M. Smart Materials and Structures,2017, 26(3), 035038.
3 Qin J B, Zhang G C, Shi X T. Materials Review A:Review Papers, 2017, 31(4), 59 (in Chinese).
秦建彬,张广成,史学涛. 材料导报:综述篇, 2017, 31(4), 59.
4 Wetzel E D, Lee Y S, Egres R G, et al. AIP Conference Proceedings, DOI:10.1063/1.1766538.
5 Wu Q M, Wan J M, Huang B Y. Journal of Central South University(Science and Technology), 2006, 37(5), 862 (in Chinese).
伍秋美,阮建明,黄伯云等. 中南大学学报(自然科学版), 2006, 37(5), 862.
6 Xu S P, Zhang Y F. Bulletin of The Chinese Ceramic Society, 2011(4), 966 (in Chinese).
徐素鹏,张玉芳. 硅酸盐通报, 2011(4), 966.
7 Lee B W, Kim C G. Advanced Composite Materials, 2012, 21(2), 177.
8 Lu Z, Jing X, Sun B, et al. Composites Science and Technology, 2013, 88, 184.
9 Park Y, Kim Y, Baluch A H, et al. International Journal of Impact Engineering, 2014, 72, 67.
10Park Y, Kim Y, Baluch A H, et al. Composite Structures, 2015, 125, 520.
11Fischer C, Braun S, Bourban P, et al. Smart Materials and Structures, 2006, 15(5), 1467.
12Fischer C, Bennani A, Michaud V, et al. Smart Materials and Structures, 2010, 19(3), 035017.
13Zhang X, Li W, Gong X. Smart Materials and Structures, 2008, 17(3), 035027.
14Jiang W, Ye F, He Q, et al. Journal of Colloid and Interface Science, 2014, 413, 8.
15Hasanzadeh M, Mottaghitalab V. Journal of Materials Engineering and Performance, 2014, 23(4), 1182.
16Jiang W F. Study on mechanical properties and mechanism of shear thic-kening material. Ph.D. Thesis, University of Science and Technology of China, China, 2015 (in Chinese).
蒋伟峰. 剪切增稠材料的力学性能表征及机理研究. 博士学位论文, 中国科学技术大学, 2015.
17He Q, Gong X, Xuan S, et al. Journal of Materials Science, 2015, 50(18), 6041.
18Wang F F, Zhang Y, Zhang H, et al. RSC Advances, 2018, 8(10), 5268.
19Qin J, Zhang G, Ma Z, et al. RSC Advances, 2016, 6(85), 81913.
20Hasanzadeh M, Mottaghitalab V, Babaei H, et al. Composites Part A: Applied Science and Manufacturing, 2016, 88, 263.
21Ghosh A, Chauhan I, Majumdar A, et al. Cellulose, 2017, 24(10), 4163.
22Sharma A, Roh M H, Jung D H, et al. Metallurgical and Materials Transactions A, 2016, 47(1), 510.
23Singhania A, Gupta S M. Beilstein Journal of Nanotechnology, 2017, 8, 1546.
[1] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[2] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[3] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[4] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[5] 王艳珍, 陈明鸣, 王成扬. 大倍率二氧化硅/碳复合材料的制备及电化学性能表征[J]. 《材料导报》期刊社, 2018, 32(3): 357-361.
[6] 张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
[7] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[8] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[9] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[10] 李笑迎,白文静,陶 凯,梁云霄. 大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用[J]. 《材料导报》期刊社, 2018, 32(10): 1695-1700.
[11] 孔 慧,刘卫丽,宋志棠. 一种非球形纳米二氧化硅颗粒制备新方法[J]. 《材料导报》期刊社, 2018, 32(10): 1683-1687.
[12] 王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
[13] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed