Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 50-55    https://doi.org/10.11896/j.issn.1005-023X.2017.024.011
  第一届先进胶凝材料研究与应用学术会议 |
纳米SiO2与粉煤灰协同改性水泥基材料性能研究
张秀芝1,2,刘明乐1,2,杜笑寒3,杨祥子1,2,周宗辉1,2
1 济南大学材料科学与工程学院,济南 250022;
2 山东省建筑材料制备与测试技术重点实验室,济南 250022;
3 河北工业大学土木与交通学院,天津 300401
Synergistic Effect of Nano Silica and Fly Ash on the Cement-based Materials
ZHANG Xiuzhi1,2, LIU Mingle1,2, DU Xiaohan3, YANG Xiangzi1,2, ZHOU Zonghui1,2
1 School of Materials Science & Engineering, University of Jinan, Jinan 250022;
2 Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Jinan 250022;
3 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401
下载:  全 文 ( PDF ) ( 862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调整纳米SiO2与粉煤灰的比例,研究了两者协同作用对水泥基材料性能的影响。结果表明,纳米SiO2(NS)和粉煤灰协同作用效果优于NS单一掺加,3%(质量分数,下同)纳米SiO2和不大于30%的粉煤灰同时掺加可以补偿粉煤灰引起的早期强度降低,且砂浆28 d抗压强度不降低。随着NS掺量增加水泥基材料的干燥收缩增大,粉煤灰可以改善纳米SiO2对干燥收缩的不利影响。随着NS掺量的增加,试件的抗冻性和抗氯离子渗透性能均得到提升,掺加3%NS与30%粉煤灰使水泥基材料达到最佳耐久性能。NS可以缩短水泥水化诱导期,加速水泥水化进程,且使胶凝体系总放热量增加。在水泥粉煤灰体系中掺入NS后,非蒸发水含量在早期明显增多,但在后期增长缓慢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张秀芝
刘明乐
杜笑寒
杨祥子
周宗辉
关键词:  纳米二氧化硅  粉煤灰  协同改性  火山灰活性    
Abstract: The synergistic effect of nano silica and fly ash on cement based materials was studied by adjusting the ratio of nano SiO2 and fly ash. The results showed that the effect of nano silica and fly ash on cement is better than that of adding single nano silica. The early compressive strength reduction by fly ash can be compensated by adding 3% nano silica and less than 30% fly ash into mortar without the decrement of 28 days compressive strength. The drying shrinkage of mortar increased with the increase of nano SiO2, but the fly ash can relieve the drying shrinkage of nano SiO2. With the increase of nano silica, the freeze thaw resistance and chloride corrosion resistance of the specimens were improved, and 3% nanometer silica and 30%fly ash could further enhance the durability of cement-based materials. Nano SiO2 can shorten the induction period of cement hydration and accelerated the process of cement hydration, and the total heat release was increased when nano SiO2 was added. When adding nano SiO2 into the cement-fly ash system, the content of non evaporated water was increased obviously in the early stage, but the increment of the non evaporated water in the late stage was slow. The synergistic effect of nanosilica and fly ash improves the performance of cement mortar, which is beneficial to the performance complementarity.
Key words:  nano silica    fly ash    synergistic effect    pozzolanic activity
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: 国家863项目(2015AA034701);国家自然科学基金(51778269);高性能土木工程材料国家重点实验室(2013CEM003)
作者简介:  张秀芝:女,1974年生,博士,副教授,主要研究方向为高性能水泥基复合材料 E-mail:zhangxz74@126.com
引用本文:    
张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
ZHANG Xiuzhi, LIU Mingle, DU Xiaohan, YANG Xiangzi, ZHOU Zonghui. Synergistic Effect of Nano Silica and Fly Ash on the Cement-based Materials. Materials Reports, 2017, 31(24): 50-55.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.011  或          https://www.mater-rep.com/CN/Y2017/V31/I24/50
1 Sarkar A, Sahani A K, Roy D K S, et al. Compressive strength of sustainable concrete combining blast furnace slag and fly ash[J]. IUP J Struct Eng, 2016,9(1):17.
2 Temuujin J, Ruescher C, Minjigmaa A, et al. Characterization of effloresences of ambient and elevated temperature cured fly ash based geopolymer type concretes[J]. Adv Mater Res, 2016,1139:25.
3 Criado M, Sobrados I, Bastidas J M, et al. Corrosion behaviour of coated steel rebars in carbonated and chloride-contaminated alkali-activated fly ash mortar[J]. Prog Org Coat, 2016,99:12.
4 Mehdipour I, Vahdani M, Amini K, et al. Linking stability characteristics to material performance of self-consolidating concrete-equivalent-mortar incorporating fly ash and metakaolin[J]. Constr Build Mater, 2016,105:206.
5 Chi M. Synthesis and characterization of mortars with circulating fluidized bed combustion fly ash and ground granulated blast-furnace slag[J]. Constr Build Mater, 2016,123:565.
6 Rong Z D, et al. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites[J]. Cem Concr Compos, 2015,56:25.
7 Fallah S, Nematzadeh M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume[J]. Constr Build Mater, 2017,132:170.
8 Chithra S, Kumar S R R S, Chinnaraju K. The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate[J]. Constr Build Mater, 2016,113:794.
9 Shah S P, Hou P, Konsta-Gdoutos M S. Nano-modification of cementitious material: Toward a stronger and durable concrete[J]. J Sustainable Cement-Based Mater, 2016,5(1-2): 2.
10 Karoriya D, Gupta R. Performance of concrete with fly ash and kaolin inclusion[J]. Imperial J Interdisciplinary Res, 2016,2(7):179.
11Wang D, Yang P, et al. Effect of SiO2 oligomers on water absorption of cementitious materials[J]. Cem Concr Res, 2016,87:22.
12Shaikh F U A, Supit S W M. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles[J]. Constr Build Mater, 2015,99:208.
13Liu M, Zhou Z, Zhang X, et al. The synergistic effect of nano-silica with blast furnace slag in cement based materials[J]. Constr Build Mater, 2016,126:624.
14Land G, Stephan D. The influence of nano-silica on the hydration of ordinary Portland cement[J]. J Mater Sci, 2012,47(2):1012.
15Xu Xun,Lu Zhongyuan. Effect of nano-silicon dioxide on hydration and hardening of portland cement[J]. J Chin Ceram Soc, 2007,35(4):478(in Chinese).
徐迅, 卢忠远. 纳米二氧化硅对硅酸盐水泥水化硬化的影响[J]. 硅酸盐学报, 2007,35(4):478.
16Zhang M, Li H. Pore structure and chloride permeability of concrete containing nano-particles for pavement[J]. Constr Build Mater, 2011,25(2):608.
17Zahedi M, Ramezanianpour A A, Ramezanianpour A M. Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration[J]. Constr Build Mater, 2015,78:354.18Lu Feifeng, Wu Yong, Gan Lifeng, et al. Effect of fly ash and admixtures on the hydration heat evolution process of portland cement[J]. Mater Rev: Res, 2011,25(3):124(in Chinese).
卢飞峰, 吴勇, 甘莉芬, 等. 掺粉煤灰和不同外加剂对水泥水化放热过程的影响[J]. 材料导报:研究篇, 2011,25(3):124.
19Zhu Hongbo, Wu Kaifan, Li Chen, et al. Nano coating fly ash by fluidized bed reactor vapordeposition (FBR-VD) and its hydration characteristics at early age[J]. J Build Mater, 2016,19(2):229.
20Neville A M. Properties of concrete[M]. 3th Edition. London: ELBS with Longman, 1981:275.
21Asgari H, Ramezanianpour A, Butt H J. Effect of water and nano-silica solution on the early stages cement hydration[J]. Constr Build Mater, 2016,129:12.
[1] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[2] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[3] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[4] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[5] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[6] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[7] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[8] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[9] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[10] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[11] 孙振平, 闫珠华, 张挺, 穆帆远, 王春胜, 羊省, 孙其岩. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 22020082-6.
[12] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[13] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[14] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed