Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 45-49    https://doi.org/10.11896/j.issn.1005-023X.2017.024.010
  第一届先进胶凝材料研究与应用学术会议 |
磷酸钾镁水泥水化产物六水磷酸钾镁(K-Struvite)定量分析
刘 娜,姜自超,汪宏涛,戴丰乐
后勤工程学院化学与材料工程系,重庆 401311
Quantitative Analysis of Hydration Products K-struvite in Magnesium Potassium Phosphate Cement
LIU Na, JIANG Zichao, WANG Hongtao, DAI Fengle
Department of Chemical and Materials Engineering, Logistical Engineering University, Chongqing 401311
下载:  全 文 ( PDF ) ( 1683KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸钾镁水泥的各项性能与其中水化产物六水磷酸钾镁(K-Struvite)的含量息息相关。使用基于X射线衍射的绝热法、Rietveld法分析了不同配比磷酸钾镁水泥中K-Struvite和MgO的相对含量,并提出了将相对含量转化为绝对含量的公式。之后使用热重分析法确定了K-Struvite的脱水温度和绝对含量,并和绝热法、Rietveld法所得结果进行了比较,发现三种方法所得结果较为一致。绝热法和Rietveld法在分析K-Struvite相对含量时简便快速,但换算为绝对含量时比热重分析法需要的相关信息要多,可操作性弱于热重分析法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘 娜
姜自超
汪宏涛
戴丰乐
关键词:  磷酸钾镁水泥  K-Struvite  定量分析  全谱拟合    
Abstract: The performance of magnesium potassium phosphate cement is closely related to the content of MgKPO4·6H2O (K-struvite). In this study, the relative content of K-struvite and MgO in magnesium phosphate cement was analyzed by the adiabatic method and Rietveld method based on X-ray diffraction, and the formula for converting relative content into absolute content was proposed. The dehydration temperature and absolute content of K-struvite were determined by thermogravimetric method, and the results were compared with the results obtained by adiabatic method and Rietveld method. The results obtained from the three methods were consistent. Adiabatic method and Rietveld method are simple and fast in the analysis of the relative content of K-struvite, but the required relative information is much more than that of thermogravimetric method when converting to absolute content, therefore the thermogravimetric method is more operational.
Key words:  magnesium potassium phosphate cement    K-struvite    quantitative analysis    Rietveld
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU526  
基金资助: 国家自然科学基金(51272283);重庆市自然科学基金(cstc2012jjB50009)
通讯作者:  汪宏涛:男,1974年生,博士,副教授,主要从事新型胶凝材料研究 E-mail:wht1969@163.com磷酸钾镁水泥水化产物六水磷酸钾镁(K-Struvite)定量分析   
作者简介:  刘娜:女,1988年生,硕士,讲师,研究方向为胶凝材料及无机硅酸盐材料 E-mail:liuna8911@163.com
引用本文:    
刘 娜,姜自超,汪宏涛,戴丰乐. 磷酸钾镁水泥水化产物六水磷酸钾镁(K-Struvite)定量分析[J]. 《材料导报》期刊社, 2017, 31(24): 45-49.
LIU Na, JIANG Zichao, WANG Hongtao, DAI Fengle. Quantitative Analysis of Hydration Products K-struvite in Magnesium Potassium Phosphate Cement. Materials Reports, 2017, 31(24): 45-49.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.010  或          https://www.mater-rep.com/CN/Y2017/V31/I24/45
1 You C, Qian J, Qin J, et al. Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC)[J]. Cem Concr Res, 2015,78:179.
2 Ma H, Liu J, Li Z, et al. Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste[J]. Mater Des, 2014,64(9):497.
3 Mestres G, Ginebra M P. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomater, 2011,7(4):1853.
4 Xia J H, Yuan D W, Wang L J. Research on hydration mechanism of magnesia phosphate cement[J]. J Wuhan University of Technology, 2009(9):25(in Chinese).
夏锦红, 袁大伟, 王立久. 磷酸镁水泥水化机理研究[J]. 武汉理工大学学报, 2009(9):25.
5 Chang Y, Shi C J, Yang N, et al. Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J Chin Ceram Soc, 2013,41(4):492(in Chinese).
常远, 史才军, 杨楠,等. 不同细度MgO对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013,41(4):492.
6 Lai Z Y, Zou Q L, Lu Z Y, et al. Quantitative analysis of hydration products in magnesium phosphate cement with Rietveld whole pattern fitting[J]. Acta Metrologica Sin, 2014,35(4):398(in Chinese).
赖振宇, 邹秋林, 卢忠远,等. Rietveld 全谱拟合方法对磷酸镁水泥水化产物的定量分析研究[J]. 计量学报, 2014,35(4):398.
7 黄继武. 多晶材料X射线衍射[M].北京:冶金工业出版社, 2012.
8 Fang J Z, Xu C F. Study on three kinds of XRD quantitative analysis methods[J]. Coal Conversion, 2010,33(2):88(in Chinese).
房俊卓, 徐崇福. 三种X射线物相定量分析方法对比研究[J]. 煤炭转化, 2010,33(2):88.
9 Young R A. The Rietveld method[J]. Crystal Res Technol, 1993,210(8):710.
10Li Y, Shi T, Chen B, et al. Performance of magnesium phosphate cement at elevated temperatures[J]. Constr Build Mater, 2015,91:126.
11Lai Z Y, Qian J S, Lu Z Y, et al. Effects of different temperature treatment to properties of magnesium phosphate cement[J]. J Funct Mater, 2012,43(15):2065(in Chinese).
赖振宇, 钱觉时, 卢忠远,等. 不同温度处理对磷酸镁水泥性能的影响[J]. 功能材料, 2012,43(15):2065.
12Yang J M, Shao Y X, Liu H. Influence of ratio of acid to base on the properties of magnesium and porassium phosphate cemen[J]. J Building Mater, 2013,16(6):923(in Chinese).
杨建明, 邵云霞, 刘海. 酸碱组分比例对磷酸钾镁水泥性能的影响[J]. 建筑材料学报, 2013,16(6):923.
13Zhang S, Shi H S, Huang S W, et al. Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition[J]. J Thermal Analysis Calorimetry, 2013,111(1):35.
[1] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[2] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[3] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[4] 李娜, 赵燕茹. 基于X-ray CT技术研究混凝土内部损伤的研究进展[J]. 材料导报, 2021, 35(21): 21169-21177.
[5] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[6] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[7] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[8] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[9] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[10] 赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐, 薛明, 胡志德. 复合无机水合盐对磷酸镁水泥水化及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 156-162.
[11] 赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
[12] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed