Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 187-192    https://doi.org/10.11896/j.issn.1005-023X.2017.023.028
  第一届先进胶凝材料研究与应用学术会议 |
Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*
赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德
后勤工程学院化学与材料工程系,重庆 401311
Influence of Na2SO4·10H2O on Hydration and Hardening of Magnesium Potassium Phosphate Cement
ZHAO Sixie, YAN Hua, WANG Hongtao, LI Yuntao, ZHANG Hansong, HU Zhide
Department of Chemical and Material Engineering,Logistic Engineering University, Chongqing 401311
下载:  全 文 ( PDF ) ( 3941KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸钾镁水泥凝结硬化过快及水化放热集中的问题严重制约着其大规模工程应用,相变材料的吸热储能功能为解决这一问题提供新途径。研究了无机水合盐Na2SO4·10H2O(NS)对磷酸钾镁水泥(MKPC)水化温升、工作性能和抗压强度的影响,并结合XRD、FT-IR、SEM等分析手段及其水化放热速率曲线探究了NS对MKPC性能的影响机制。结果表明:NS的溶解和相变过程吸收大量热,同时释放出结晶水,降低了MKPC体系中Mg2+、PO3-4和H+的溶出速率及浓度,MKPC系统内部水化反应速率降低,凝结时间延长,流动度增大,水化放热和水化温升变得更加平缓,在水化早期,MKPC的硬化体强度随NS掺量增加略有降低。在一定的NS掺量(≤4%)内,MKPC水化产物的结晶度提高,后期强度稳定增长,掺有2%NS的MKPC的28 d强度将高于基准组。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思勰
晏华
汪宏涛
李云涛
张寒松
胡志德
关键词:  Na2SO4·10H2O;  磷酸钾镁水泥  相变吸热  水化温升  水化产物  结晶度    
Abstract: Too fast setting and hardening rate as well as concentrative hydration heat of magnesium potassium phosphate cements restrict its extensive engineering application seriously. Endothermic energy storage of phase change material offers a new way for solving the problems. Effect of inorganic phase change material Na2SO4· 10H2O(NS) on hydration temperature,work perfor-mances and compressive strength of magnesium potassium phosphate cement(MKPC) were investigated. Moreover, influence mechanism of NS on properties of MKPC were researched with the aids of XRD, FT-IR, SEM analyses and hydration heat release rate. The result showed that solution and phase change process of NS absorbed a multitude of hydration heat and released crystalliferous water, which attenuated solution rate and concentration of Mg2+, PO3-4 and H+ in system of MKPC. So rate of interior hydration of MKPC reaction diminished, causing prolonged setting time, increased fluidity, and mild hydration heat release and temperature rise. In early hydration process, with NS content increase, early strength of MKPC diminish slightly. Under a certain content of NS (≤ 4%), the crystallinity of hydration products increased, and the long-term strength of MKPC increased steadily. 28 d compressive strength of MKPC with 2% NS was higher than that of the reference group.
Key words:  Na2SO4·10H2O    magnesium potassium phosphate cement    phase change decalescence    hydrate calefactive    hydration products    crystallinity
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TB321  
基金资助: *国家自然科学基金(51272283)
通讯作者:  胡志德:男,讲师,主要从事智能材料的制备、性能研究 E-mail:huzd6503@163.com   
作者简介:  赵思勰:男,1994年生,硕士研究生,主要从事相变材料和磷酸镁水泥研究 E-mail:1527794185@qq.com
引用本文:    
赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
ZHAO Sixie, YAN Hua, WANG Hongtao, LI Yuntao, ZHANG Hansong, HU Zhide. Influence of Na2SO4·10H2O on Hydration and Hardening of Magnesium Potassium Phosphate Cement. Materials Reports, 2017, 31(23): 187-192.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.028  或          https://www.mater-rep.com/CN/Y2017/V31/I23/187
1 Wang H T,Qian J S, Wang J G. Review of magnesia-phosphate cement[J]. Mater Rev, 2005,12(2):46(in Chinese).
汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005,12(2):46.
2 Yang Q, Zhu B, Wu X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater Struct, 2000,33(4):229.
3 Li J, Zhang W, Cao Y. Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement[J]. Constr Building Mater, 2014,5(8):122.
4 Ding Z, Li Z. High-early-strength magnesium phosphate cement with fly ash[J]. ACI Mater J, 2005,102(6):375.
5 Buj I, Torras J, Rovira M, et al. Leaching behavior of magnesium phosphate cements containing high quantities of heavy metals[J]. J Hazard Mater, 2010,175(1):789.
6 Li C M, Wang P M, Wang A, et al. Effect of admixtures on properties of magnesium phosphate cement and the mechanism[J]. Concrete, 2015(1):115(in Chinese).
李春梅, 王培铭, 王安, 等. 掺合料对磷酸镁水泥的性能影响及机理研究[J]. 混凝土, 2015(1):115.
7 Ji F, Jiao B X, Qiu T. The effects of urea on setting time and hydration exothermic of magnesium phosphate cement[J]. China Concr Cem Products, 2013(5):1(in Chinese).
吉飞, 焦宝祥, 丘泰. 尿素对磷酸镁水泥凝结时间和水化放热的影响[J]. 混凝土与水泥制品, 2013(5):1.
8 Gao G B, Qian C X, Zhuang Y, et al. Research on use of phase change materials for reduction of internal temperature rise of mass concrete[J]. J Hydroelectric Eng, 2010, 29(1):197(in Chinese).
高桂波, 钱春香, 庄园,等. 用相变材料降低大体积混凝土内部温升的研究[J]. 水力发电学报, 2010,29(1):197.
9 Shi W, Hou J P. Temperature control properties of mass concrete with phase change material in different condition[J]. J Building Mater, 2013, 16(6):1063(in Chinese).
史巍, 侯景鹏. 不同条件下相变控温大体积混凝土的控温性能[J]. 建筑材料学报, 2013,16(6):1063.
10Zhou S X, Rong M G, Zuo S, et al. Temperature control properties of composite phase change materials in mass concrete[J]. J East China Jiaotong University, 2013,30(4):30(in Chinese).
周双喜, 荣茂阁, 左晟,等. 复合相变储能材料在大体积混凝土中的控温性能[J]. 华东交通大学学报, 2013,30(4):30.
11Wang J. Study on the basic throries and preparation of phase change and temperature self-control concrete[D]. Wuhan: Wuhan University of Technology, 2011(in Chinese).
王军. 相变控温混凝土的理论基础研究和制备[D]. 武汉: 武汉理工大学, 2011.
12Li Y T,Yan H,Wang H T,et al. Preparation of composite phase change materials and its effect on the hydration heat of magnesium phosphate cement[J]. J Funct Mater, 2016, 47(7):07211(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 复合相变材料的制备及其对磷酸镁水泥水化热的影响[J].功能材料, 2016, 47(7):07211.
13 Li Y T, Yan H, Wang H T, et al. Effect of paraffin/expand grap-hite composite phase change material on the hydration performance of magnesium phosphate cement[J]. Bull Chin Ceram Soc, 2016,35(9):3007(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 石蜡/膨胀石墨复合相变材料对磷酸镁水泥水化性能的影响[J]. 硅酸盐通报, 2016,35(9):3007.
14Yang J M, Qian C X, Jiao B X, et al. Effect of NaH2PO4?10H2O on hydration hardening of potassium and magnesium phosphate cement[J]. J Building Mater, 2011,14(3):299(in Chinese)
杨建明, 钱春香, 焦宝祥, 等. NaH2PO4?10H2O对磷酸镁水泥水化硬化特性的影响[J]. 建筑材料学报,2011,14(3):299..
15Qi Z Q. Research on shrinkage performance and reduction measures of magnesium phosphate cement[D].Chongqing: Logistical Engineering University, 2015(in Chinese).
齐召庆.磷酸镁水泥石收缩性能及减缩措施研究[D]. 重庆:后勤工程学院, 2015.
16Jiang Zichao.Research on influencing factors and mechanism of permeability of magnesium phosphate cement[D]. Chongqing: Logistical Engineering University, 2017(in Chinese).
姜自超. 磷酸镁水泥渗透性影响因素及机理研究[D]. 重庆: 后勤工程学院, 2017.
17Chang Y, Shi C J, Yang N, et al. Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J Chin Ceram Soc, 2013,41(4):492(in Chinese).
常远, 史才军, 杨楠, 等. 不同细度 MgO 对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013,41(4):492.
18Lai Z Y, Lai X, Shi J, et al. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement[J]. Constr Building Mater, 2016,129:70.
19Dai Fengle. Study on the hydration mechanism phosphate cement based on thermodynamics[D]. Chongqing: Logistical Engineering University, 2017(in Chinese).
戴丰乐. 基于热动力学的磷酸镁水泥水化机理研究[D]. 重庆: 后勤工程学院, 2017.
[1] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[2] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[3] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[4] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[5] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[6] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[7] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[8] 张洪磊, 曹明莉. 机械粉磨对黄河泥沙颗粒群特性及胶凝活性的影响[J]. 材料导报, 2024, 38(13): 22090257-6.
[9] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[10] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[11] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[12] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[13] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[14] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[15] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed