Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22060287-6    https://doi.org/10.11896/cldb.22060287
  无机非金属及其复合材料 |
砖混建筑垃圾制备蒸压加气混凝土性能及水化机理
陈永亮1,2,*, 成亮1, 陈铁军1,*, 陈君宝1, 张轶轲1, 夏加庚3
1 武汉科技大学资源与环境工程学院,武汉 430081
2 国家环境保护矿冶资源利用与污染控制重点实验室,武汉 430081
3 泳锌江苏工程技术有限公司,江苏 苏州 215000
Properties and Hydration Mechanism of Autoclaved Aerated Concrete Prepared by Waste Concrete and Waste Clay Brick
CHEN Yongliang1,2,*, CHENG Liang1, CHEN Tiejun1,*, CHEN Junbao1, ZHANG Yike1, XIA Jiageng3
1 College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2 State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
3 Ushin Jiangsu Engineering Technology Co., Ltd., Suzhou 215000, Jiangsu, China
下载:  全 文 ( PDF ) ( 13522KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以砖混建筑垃圾为主要原料制备蒸压加气混凝土(AAC),考察了废弃混凝土(WC)、废弃黏土砖(CB)及其复配掺量对蒸压加气混凝土抗压强度和干体积密度的影响,并利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了不同砖混配比加气混凝土样品的物相组成和微观形貌。结果表明,当建筑垃圾的掺量为50%~60%(质量分数,下同)时,以废弃混凝土或废弃黏土砖为原料制备的蒸压加气混凝土的抗压强度和干体积密度均能达到《蒸压加气混凝土砌块》(GB11968-2020)中 A5.0 B07级别的要求。复配能进一步提升样品性能,随着废弃混凝土、废黏土砖质量比(m(WC)∶m(CB))的降低,所得样品的抗压强度不断升高,而干体积密度先降低后上升,当质量配比为2∶3~3∶2时,试样性能达到《蒸压加气混凝土砌块》(GB11968-2020)中A5.0 B06级别的要求。蒸压养护过程中,坯体中的SiO2、Al2O3、Ca(OH)2、长石、富钙型水化硅酸钙(α-C2SH)共同作用,生成大量片状托贝莫来石、半结晶的CSH(I)、CSH凝胶和少量水化石榴石、硬石膏,与原料中残留的石英、方解石一起填充在孔壁中,相互交织成网状,提高样品强度的同时降低其密度。砖混复配的样品含有更多结晶完整的托贝莫来石、CSH(I)以及适量的CSH凝胶,形成良好的网状致密结构,使样品综合性能更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈永亮
成亮
陈铁军
陈君宝
张轶轲
夏加庚
关键词:  废弃混凝土  废弃黏土砖  蒸压加气混凝土  抗压强度  干体积密度  水化产物    
Abstract: The autoclaved aerated concrete (AAC) was prepared with waste concrete (WC) and waste clay bricks (CB) as the main raw materials. The influences of WC, CB and compound addition amounts on the compressive strength and dry bulk density of autoclaved aerated concrete were studied. The phase compositions and microscopic morphology of the AAC samples were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the compressive strength and dry bulk density of the AAC prepared with WC or CB, respectively, could meet the requirements for A5.0 B07 grade of autoclaved aerated concrete block (GB11968-2020) as the addition amount of construction waste ranged from 50wt% to 60wt%. The properties of AAC prepared with compounding WC and CB were improved, as the mass ratio of WC to CB (m(WC)∶m(CB)) decreased, the compressive strength of the AAC samples persistently increased, while the dry bulk density firstly decreased and then increased. When the m(WC)∶m(CB) was in the range of 2∶3—3∶2, the compressive strength and dry bulk density of the samples could meet the requirements for A5.0 B06 grade of autoclaved aerated concrete block (GB11968-2020). During the autoclave curing process, the SiO2, Al2O3, Ca(OH)2, feldspar, calcium-rich calcium silicate hydrate (α-C2SH) in the green body interreacted to generate a large amount of flaky tobermorite, semicrystalline CSH (I), CSH gel, and a small amount of hydrogarnet, anhydrite, together with residue quartz and calcite of raw materials, filled with the gaps in the hole wall and staggered together to form a certain porous and framework hierarchy, improved the strength and reduced the density of AAC. The samples prepared with compounding WC and CB contained more well-crystallized tobermorite, CSH (I), and moderate CSH gel to form dense network structure, favored the better properties of AAC.
Key words:  waste concrete    waste clay bricks    autoclaved aerated concrete    compressive strength    dry bulk density    hydration product
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU528.2  
基金资助: 湖北省重点研发计划(2022BCA062);国家环境保护矿冶资源利用与污染控制重点实验室开放基金(HB201913);国家自然科学基金(41102218)
通讯作者:  *陈永亮,武汉科技大学资源与环境工程学院副教授,2012年6月毕业于武汉科技大学,获得化学工艺专业博士学位。长期从事新型建筑材料、环境功能材料及固废资源化研究,在国内外重要期刊发表文章20多篇,申报发明专利10余项,以主要参与者获湖北省科技进步一等奖2项。chenyongliang@wust.edu.cn
陈铁军,武汉科技大学资源与环境工程学院教授、博士研究生导师,2008年获得中南大学矿业工程专业博士学位。目前研究领域为固废再生与资源化利用、复杂铁矿分选与低碳造块新技术,在国内外重要期刊发表论文130余篇,以主要参与者获国家科技进步二等奖2项。chenytiejun@wust.edu.cn   
引用本文:    
陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
CHEN Yongliang, CHENG Liang, CHEN Tiejun, CHEN Junbao, ZHANG Yike, XIA Jiageng. Properties and Hydration Mechanism of Autoclaved Aerated Concrete Prepared by Waste Concrete and Waste Clay Brick. Materials Reports, 2024, 38(12): 22060287-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060287  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22060287
1 Wang B, Sun J, Wang J F, et al. Construction Economy, 2021, 42(6), 8 (in Chinese).
王波, 孙嘉, 王静峰, 等. 建筑经济, 2021, 42(6), 8.
2 Qi S J. Preparation of autoclaved brick by waste concrete and waste clay brick. Master's Thesis, Dalian University of Technology, China, 2021 (in Chinese).
齐仕杰. 利用废弃混凝土和废弃粘土砖制备蒸压砖. 硕士学位论文, 大连理工大学, 2021.
3 Duan Z H, Huang D L, Xiao J Z, et al. Environmental Engineering, 2021, 39(10), 171 (in Chinese).
段珍华, 黄冬丽, 肖建庄, 等. 环境工程, 2021, 39(10), 171.
4 Yang Y B, Su Y, Li Z J, et al. Concrete, 2020(10), 80 (in Chinese).
杨医博, 苏延, 李之吉, 等. 混凝土, 2020(10), 80.
5 Xu K D, Wang J N, Li Z X, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(9), 2905 (in Chinese).
徐开东, 王继娜, 李志新, 等. 硅酸盐通报, 2020, 39(9), 2905.
6 Yong J K, Yun W C. Construction and Building Materials, 2012, 30, 500.
7 Shao J H, Gao J M, Zhao Y S, et al. Construction and Building Mate-rials, 2019, 213, 209.
8 Wang D. Study on seismic behavior of B06 desert sand autoclaved aerated concrete masonry. Master's Thesis, Shihezi University, China, 2019 (in Chinese).
王迪. B06级沙漠砂蒸压加气混凝土砌体抗震性能研究. 硕士学位论文, 石河子大学, 2019.
9 Rahman R A, Fazlizan A, Asim N, et al. Journal of Renewable Mate-rials, 2021, 9(1), 61.
10 Kalpana M, Mohith S. Materials Today:Proceedings, 2020, 22, 894.
11 Aliabdo A A, Abd-Elmoaty A E M, Hassan H H. Alexandria Engineering Journal, 2014, 53(1), 119.
12 Zhang H L, Xu K M, Chen Y L, et al. Chinese Journal of Environmental Engineering, 2019, 13(2), 441 (in Chinese).
张惠灵, 徐克猛, 陈永亮, 等. 环境工程学报, 2019, 13(2), 441.
13 He B H. Performance test of autoclaved aerated concrete block for construction waste. Master's Thesis, North China University of Water Resources and Electric Power, China, 2019 (in Chinese).
何博晗. 建筑垃圾制备蒸压加气混凝土砌块性能试验. 硕士学位论文, 华北水利水电大学, 2019.
14 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Test methods of autoclaved aerated concrete:GB/T 11969-2020, Standards Press of China, China, 2020 (in Chinese).
国家市场监督管理总局、国家标准化管理委员会. 蒸压加气混凝土性能试验方法:GB/T 11969-2020, 中国标准出版社, 2020.
15 Chen X, Li Y, Zhuang P Y. China Concrete and Cement Products, 2019(11), 96 (in Chinese).
陈曦, 李滢, 庄平英. 混凝土与水泥制品, 2019(11), 96.
16 Ouyang X W, Wang L Q, Fu J Y, et al. Construction and Building Materials, 2021, 300, 58.
17 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Autoclaved aerated concrete blocks:GB/T 11968-2020, Standards Press of China, China, 2020 (in Chinese).
国家市场监督管理总局、国家标准化管理委员会. 蒸压加气混凝土砌块:GB/T 11968-2020, 中国标准出版社, 2020.
18 Wu S K, Ji T, Zhang B B, et al. New Building Materials, 2021, 48(12), 181 (in Chinese).
吴世康, 季韬, 张彬彬, 等. 新型建筑材料, 2021, 48(12), 181.
19 Tong Y, Zhang J N, Tian X, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(4), 1066 (in Chinese).
佟钰, 张君男, 田鑫, 等. 硅酸盐通报, 2015, 34(4), 1066.
20 Guo X L, Song M. Materials Reports, 2018, 32(Z2), 440 (in Chinese).
郭晓潞, 宋猛. 材料导报, 2018, 32(Z2), 440.
21 Zhang C L, Zhang K F, Zuo W, et al. Materials Reports, 2020, 34(24), 24034 (in Chinese).
王长龙, 张凯帆, 左伟, 等. 材料导报, 2020, 34(24), 24034.
22 Mao K, Cai L, Wu X W, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(12), 3719 (in Chinese).
毛奎, 蔡亮, 吴小文, 等. 硅酸盐通报, 2019, 38(12), 3719.
23 Bensted J, Barnes P. Structure and performance of cements, Spon Press, USA, 2002.
24 Zhai Y Y, Zcng Q D, Hellmann R, et al. Acta Petrologica Sinlca, 2020, 36(9), 2834 (in Chinese).
翟媛媛, 曾庆栋, Hellmann R, 等. 岩石学报, 2020, 36(9), 2834.
25 Chen W, Ni W, Li D Z, et al. Materials Science & Technology, 2015, 23(1), 32 (in Chinese).
陈伟, 倪文, 李德忠, 等. 材料科学与工艺, 2015, 23(1), 32.
26 Ke C J, Wu W Z, Ke T, et al. Journal of Yangtze University (Natural Science Edition), 2010, 7(1), 112 (in Chinese).
柯昌君, 吴维舟, 柯涛, 等. 长江大学学报自然科学版(理工卷), 2010, 7(1), 112.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[4] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[5] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[6] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[7] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[10] 李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
[11] 黄正峰, 欧忠文, 罗伟, 王飞, 王廷福. 聚醚型减缩剂延缓水泥水化的机理分析[J]. 材料导报, 2024, 38(10): 22060030-5.
[12] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[13] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[14] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[15] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed