Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22060030-5    https://doi.org/10.11896/cldb.22060030
  无机非金属及其复合材料 |
聚醚型减缩剂延缓水泥水化的机理分析
黄正峰, 欧忠文*, 罗伟, 王飞, 王廷福
中国人民解放军陆军勤务学院,重庆 401311
Mechanism Analysis of Polyether Shrinkage Reducing Admixture(SRA) Delaying Cement Hydration
HUANG Zhengfeng, OU Zhongwen*, LUO Wei, WANG Fei, WANG Tingfu
Army Logistics Academy of PLA, Chongqing 401311, China
下载:  全 文 ( PDF ) ( 4500KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 减缩剂在抑制混凝土收缩上的应用十分广泛,但对水泥水化进程会产生阻碍,探究产生这种负面影响的原因具有一定的现实意义。聚醚型减缩剂是目前应用极为广泛的一类减缩剂,以此类减缩剂作为研究对象,通过测试水泥的水化热和水化程度、液体的表面张力、砂浆的抗压强度和凝结时间、浆体孔隙溶液中的离子浓度、硫酸盐的最大溶解度和溶解速度,探讨了聚醚型减缩剂延缓水泥水化进程的机理。结果表明:加入减缩剂会显著降低砂浆前期的力学性能和水泥的水化程度,但随着龄期的延长这种负面影响会逐渐减弱;减缩剂还会延长砂浆的凝结时间,降低水泥的水化热,孔隙溶液中氢氧根浓度和硫酸盐的最大溶解度、溶解速度降低是导致这一现象的原因;含有减缩剂的孔隙溶液、去离子水溶液的表面张力与减缩剂浓度呈双线性关系,拐点之后减缩剂浓度的增加对表面张力无明显作用;延迟掺入减缩剂可以降低其对水泥水化的不利影响,减少砂浆强度降幅。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄正峰
欧忠文
罗伟
王飞
王廷福
关键词:  减缩剂  抗压强度  水化程度  水化热  离子浓度  表面张力  机理分析    
Abstract: Shrinkage reducing admixture is widely used to restrain the shrinkage of concrete, but it will hinder the hydration process of cement. It is of practical significance to explore the source of this negative effect. Polyether type shrinkage reducing admixture is the most widely used shrinkage reducing admixture at present. Taking this kind of shrinkage reducing admixture as the research object. By testing the hydration heat and hydration degree of cement, the surface tension of liquid, the compressive strength and setting time of mortar, the ion concentration in paste pore solution, the maximum solubility and dissolution rate of sulfate, the interaction mechanism between shrinkage reducing admixture and cement was discussed. The results show that the addition of shrinkage reducing admixture can significantly reduce the mechanical properties of mortar and the hydration degree of cement, but the negative effect will gradually decrease with the increase of age, and the setting time of mortar and the hydration heat of cement will also be reduced by adding shrinkage reducing admixture. The decrease of hydroxyl radical concentration, maximum solubility and dissolution rate of sulfate in pore solution is the reason for this phenomenon. There is a bilinear relationship between the surface tension of pore solution and deionized aqueous solution containing shrinkage reducing admixture and the concentration of shrinkage reducing admixture. After the inflection point, the increase of the concentration of shrinkage reducing admixture has no obvious effect on the surface tension, and the delayed addition of shrinkage reducing admixture alleviates its adverse effect on cement hydration and reduces the decrease of mortar strength.
Key words:  shrinkage reducing admixture    compressive strength    degree of hydration    heat of hydration    ion concentration    surface tension    mechanism analysis
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TU528.01  
基金资助: 军队后勤科研计划项目(BLJ17J008);军委后保部科研项目(CLJ19J020);国家自然科学基金(11702324)
通讯作者:  *欧忠文,中国人民解放军陆军勤务学院教授、博士研究生导师。1986年四川轻化工大学化学专业本科毕业,1993年重庆大学物理化学专业硕士毕业,2003年重庆大学材料学专业博士毕业后到中国人民解放军陆军勤务学院工作至今。目前主要从事表面处理、军事工程抢修抢建、微纳米材料等方面的研究。任教育部土木工程材料教科委委员,主持或主研国家重大基础研究计划项目、国家科技重点专项、国家自然科学基金等30余项,发表论文100多篇,授权发明专利23项。ouzhongwen@sina.com   
作者简介:  黄正峰,2020年6月、2022年12月于中国人民解放军陆军勤务学院分别获得管理学学士学位和工学硕士学位。目前主要研究领域为轻质高强混凝土自收缩抑制机理。
引用本文:    
黄正峰, 欧忠文, 罗伟, 王飞, 王廷福. 聚醚型减缩剂延缓水泥水化的机理分析[J]. 材料导报, 2024, 38(10): 22060030-5.
HUANG Zhengfeng, OU Zhongwen, LUO Wei, WANG Fei, WANG Tingfu. Mechanism Analysis of Polyether Shrinkage Reducing Admixture(SRA) Delaying Cement Hydration. Materials Reports, 2024, 38(10): 22060030-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060030  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22060030
1 Chen B C, Wei J G, Su J Z, et al. Journal of Architecture and Civil Engineering, 2019, 36(2), 10(in Chinese).
陈宝春, 韦建刚, 苏家战, 等. 建筑科学与工程学报, 2019, 36(2), 10.
2 Zeng G D, Zhou M, Yang T Y, et al. Concrete, 2020(3), 105(in Chinese).
曾国东, 周敏, 杨腾宇, 等. 混凝土, 2020(3), 105.
3 Ma Y P, Zhu B R, Tan M H. Journal of Building Materials, 2003(1), 20(in Chinese).
马一平, 朱蓓蓉, 谈慕华. 建筑材料学报, 2003(1), 20.
4 Lu J Y, Wang L, Yong H, et al. Material Reports, 2020, 34(S2), 1618(in Chinese).
卢京宇, 王林, 雍涵, 等. 材料导报, 2020, 34(S2), 1618.
5 Zuo W Q, Tian Q, Ran Q P, et al. Journal of Building Materials, 2016, 19(3), 503(in Chinese).
左文强, 田倩, 冉千平, 等. 建筑材料学报, 2016, 19(3), 503.
6 Zhan P M, He Z H. Construction and Building Materials, 2019, 201, 676.
7 Zhang W Y, Lin H X, Wang S, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 526(in Chinese).
张文艳, 林华夏, 王帅, 等. 硅酸盐通报, 2022, 41(2), 526.
8 Rui Y, Spiesz P, Brouwers H . Cement and Concrete Research, 2014, 40(7), 187.
9 Wyrzykowski M, Lura P, Bajare D, et al. Cement and Concrete Research, 2015(6), 76.
10 Li Q, Chen G J. Material chemistry(The second edition), Higher Education Press, China, 2010(in Chinese).
李奇, 陈光巨. 材料化学. (第2版), 高等教育出版社, 2010.
11 Rajabipour F, Sant G, Weiss J. Cement and Concrete Research, 2008, 38(5), 606.
12 Penko M. Some early hydration processes in cement paste as monitored by liquid phase composition measurements. Ph. D. Thesis, Purdue University, 1983.
13 James B, Ivan O. Hydration, setting and hardening of portland cement, Butterworth-Heinemann, 2019.
14 Wei D B, Ding M, Ren G B, et al. Material Reports, 2018, 32(S2), 492(in Chinese).
魏定邦, 丁民, 任国斌, 等. 材料导报, 2018, 32(S2), 492.
15 Wang Q, Li M Y, Shi M X. Journal of the Chinese Ceramic Society, 2014, 42(5), 629(in Chinese).
王强, 黎梦圆, 石梦晓. 硅酸盐学报, 2014, 42(5), 629.
16 Rongbing B, Jian S. Cement and Concrete Research, 2005, 35(3), 445.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[4] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[5] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[6] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[7] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[10] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[11] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[12] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[13] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[14] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[15] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed