Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22080032-7    https://doi.org/10.11896/cldb.22080032
  金属与金属基复合材料 |
焊丝成分对超高强装甲钢焊接接头组织与性能的影响
郑道友1, 徐宇欣2, 王苏煜2, 王文权2,*
1 浙江工贸职业技术学院光电制造学院,浙江 温州 325002
2 吉林大学材料科学与工程学院,长春 130022
Effects of Welding Wire Composition on the Microstructures and Mechanical Properties of Ultra-high Strength Armored Steel Welded Joints
ZHENG Daoyou1, XU Yuxin2, WANG Suyu2, WANG Wenquan2,*
1 College of Optoelectronic Manufacturing, Zhejiang Industry & Trade Vocational College, Wenzhou 325002, Zhejiang, China
2 School of Materials Science and Engineering, Jilin University, Changchun 130022, China
下载:  全 文 ( PDF ) ( 43944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用气体保护电弧焊工艺完成了4.5 mm和9.0 mm超高强装甲钢的焊接,研究了焊丝(MG70S-6和ER307Si焊丝)成分对接头组织与性能的影响,通过光学显微镜(OM)、扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)等表征方法对焊接接头各区域进行微观组织和物相结构的分析,并测试了接头的硬度分布、拉伸性能和冲击韧性。结果表明,焊接接头成形质量良好,无明显未熔合、气孔、裂纹等缺陷,焊缝区组织为片状马氏体、针状铁素体和少量粒状贝氏体,完全淬火区组织为马氏体和贝氏体,不完全淬火区组织为马氏体和铁素体,回火区析出网状渗碳体。焊接接头的热影响区软化现象较为明显,接头难以达到与母材等强,断裂主要发生在焊缝区,呈现出脆性断裂特征。采用ER307Si焊丝焊接的9.0 mm装甲钢接头的焊缝室温冲击功达到94 J,完全满足使用要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑道友
徐宇欣
王苏煜
王文权
关键词:  超高强装甲钢  气体保护电弧焊  微观组织  力学性能    
Abstract: 4.5 mm and 9.0 mm thick ultra-high strength armored steels were welded successfully by robotic gas-shielded arc welding technique, and the effects of welding wire (MG70S-6, ER307Si) composition on the microstructures and mechanical properties of welded joints were investigated. The microstructures and phase structures of welded joints were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive analysis (EDS) and X-ray diffraction (XRD), and the hardness, tensile properties and impact toughness of welded joints were also examined. The results showed that the welded joints were well formed without visible defects such as lack of fusion, pores or cracks. The microstructures of weld metals were composed of flaky martensite, acicular ferrite and a small amount of granular bainite, and the microstructures of the fully quenched zone were martensite and bainite. The incomplete quenched zone was composed of mixed microstructure of martensite and ferrite, and reticular cementite was precipitated in the tempering zone. The softening phenomenon of the heat-affected zone of the welded joint was relatively obvious, and the joint strengths were all lower than those of base metals, and the fracture mainly occurred in the weld zone, reflecting the characteristics of brittle fracture. The room temperature impact energy of the 9.0 mm armored steel joint welded with ER307Si reached 94 J, which could meet the application requirements.
Key words:  ultra-high strength armored steel    gas-shielded arc welding technique    microstructure    mechanical property
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TG422.3  
  TG444  
基金资助: 吉林省科技发展计划项目(20200401034GX)
通讯作者:  *王文权,吉林大学材料科学与工程学院教授、博士研究生导师。长期从事材料连接和材料表面改性领域的教学和科研工作。2010—2012年在长春轨道客车股份有限公司博士后工作站工作,2009 年在德国亚琛大学表面工程研究所任访问学者,2007年在韩国釜山国立大学材料连接实验室任访问学者。发表了SCI与EI检索论文50余篇,负责完成科研项目20余项,授权发明专利10余项。jluwwq@163.com   
作者简介:  郑道友,浙江工贸职业技术学院副教授,长期从事机械制造工艺领域的教学和科研工作。浙江省高等学校中青年学科带头人、浙江省职业教育教师教学创新团队负责人、温州市“551”人才;获浙江省教学成果奖二等奖1项,在国内期刊发表论文10余篇,出版教材8本,主持省市级课题10余项,授权专利20余项。
引用本文:    
郑道友, 徐宇欣, 王苏煜, 王文权. 焊丝成分对超高强装甲钢焊接接头组织与性能的影响[J]. 材料导报, 2024, 38(10): 22080032-7.
ZHENG Daoyou, XU Yuxin, WANG Suyu, WANG Wenquan. Effects of Welding Wire Composition on the Microstructures and Mechanical Properties of Ultra-high Strength Armored Steel Welded Joints. Materials Reports, 2024, 38(10): 22080032-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080032  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22080032
1 Cao H Q, Zhao B R, Xu L T. Armor protection technology, Ordnance Industry Press, China, 2012 (in Chinese)
曹贺全, 赵宝荣, 徐龙堂. 装甲防护技术, 兵器工业出版社, 2012.
2 Zhang H J, Li T, Wang J Q, et al. Journal of Iron and Steel Research, 2017, 29(4), 323 (in Chinese).
张海军, 李潭, 王晶琦, 等. 钢铁研究学报, 2017, 29(4), 323.
3 Chen J S, Gao Y L, Sun B S, et al. Journal of Ordnance Equipment Engineering, 2020, 41(10), 1 (in Chinese).
陈京生, 高永亮, 孙葆森, 等. 兵器装备工程学报, 2020, 41(10), 1.
4 Tan J, Zhang Y. Acta Armamentarii, 2013, 34(1), 115 (in Chinese).
谭俊, 张勇. 兵工学报, 2013, 34(1), 115.
5 Chen G, Dai L W, Sun Z F, et al. Journal of Ordnance Equipment Engineering, 2017, 38(9), 58 (in Chinese).
陈功, 代璐蔚, 孙智富, 等. 兵器装备工程学报, 2017, 38(9), 58.
6 Maweja K, Stumpf W. Materials Science & Engineering A, 2006, 432(1-2), 158.
7 Jena P K, Kumar K S, Krishna V R, et al. Engineering Failure Analysis, 2008, 15(8), 1088.
8 Shi J, Dong H, Wang Q, et al. Journal of Iron and Steel Research, 2000, 12(3), 36 (in Chinese).
时捷, 董瀚, 王琪, 等. 钢铁研究学报, 2000, 12(3), 36.
9 Dong X C, Pan H, Zhao Y, et al. Transactions of Materials and Heat Treatment, 2019, 40(9), 163 (in Chinese).
董现春, 潘辉, 赵阳, 等. 材料热处理学报, 2019, 40(9), 163.
10 Cabrilo A, Geric K. Procedia Structural Integrity, 2018, 13, 2059.
11 Zhou L L. Research on the welding procedure and weld microstructures and properties of high strength steel thick plate welded by laser welding with filling wire. Master’s Thesis, Jiangsu University of Science and Technology, China, 2014 (in Chinese).
周礼龙. 高强钢厚板激光填丝焊工艺与接头组织性能研究. 硕士学位论文, 江苏科技大学, 2014.
12 Ramirez J E. Welding Journal, 2008, 87(3), 65.
13 Guo W, Li L, Dong S Y, et al. Optics & Lasers in Engineering, 2017, 91, 1.
14 Zhang N, Dong X C, Pan H, et al. Transactions of the China Welding Institution, 2015, 36(5), 93 (in Chinese).
张楠, 董现春, 潘辉, 等. 焊接学报, 2015, 36(5), 93.
15 Sun Q, Di H S, Li J C, et al. Materials Science & Engineering A, 2016, 669, 150.
16 Gao Z. Microstructure control and application of high strength armor protective steel plate AP500. Master’s Thesis, Northeastern University, China, 2020 (in Chinese).
郜峥. 高强度装甲防护钢板AP500组织性能控制与应用. 硕士学位论文, 东北大学, 2020.
17 Xu L Y, Bai Y J, Han Y D, et al. Transactions of the China Welding Institution, 2022, 43(3), 1(in Chinese).
徐连勇, 白玉洁, 韩永典, 等. 焊接学报, 2022, 43(3), 1.
18 Lee J H, Park S H, Kwon H S, et al. Materials & Design, 2014, 64, 559.
19 Jiao S J, Wang G F, Jia Y L, et al. Transactions of the China Welding Institution, 2022, 43(3), 93 (in Chinese).
焦帅杰, 王国佛, 贾玉力, 等. 焊接学报, 2022, 43(3), 93.
20 Peng X N, Peng Y, Peng X K, et al. Journal of Mechanical Enginee-ring, 2017, 53(18), 106 (in Chinese).
彭杏娜, 彭云, 彭先宽, 等. 机械工程学报, 2017, 53(18), 106.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed