Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21080253-7    https://doi.org/10.11896/cldb.21080253
  无机非金属及其复合材料 |
速凝剂对低水胶比浆体早期水化与微观结构的影响
罗彪1, 罗正东1,*, 任辉启1,2, 郭瑞奇1
1 湘潭大学土木工程学院,湖南 湘潭 411105
2 军事科学院国防工程研究院,河南 洛阳 471023
Effects of Accelerators on the Early Hydration and Microstructure of Paste with Low Water-Binder Ratio
LUO Biao1, LUO Zhengdong1,*, REN Huiqi1,2, GUO Ruiqi1
1 College of Civil Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
2 National Defense Engineering Institute, Academy of Military Science of PLA, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 2887KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低水胶比、高胶凝材料掺量的超高性能混凝土(UHPC)在常温养护条件下易产生凝结硬化不及时的问题。为促进UHPC在隧道初支、工程结构快速修复中的推广应用,拟采用有碱速凝剂(NA)和无碱速凝剂(AS)提升低水胶比浆体的早期凝结硬化速率。本工作通过水化热、水化溶出离子浓度、凝结时间和抗压强度试验研究速凝剂作用下低水胶比浆体的早期水化行为及凝结硬化规律,采用X射线衍射、SEM形貌观察和EDS能谱等手段对水化产物物相组成及微观结构演变规律进行了分析。结果表明,速凝剂的掺入加快了低水胶比复合胶凝材料浆体的早期水化速率,同时也促进了浆体的凝结硬化;NA对UHPC的促凝效果优于AS,其中NA-2%的1 d抗压强度为53.3 MPa,28 d强度比为94.9%,而AS-4%的1 d抗压强度为38.9 MPa,28 d强度比为92.3%;速凝剂促使低水胶比浆体快速生成大量水化产物,进而提高了浆体早期微观结构的致密性,且水化产物物相组成受速凝剂类型的影响较为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗彪
罗正东
任辉启
郭瑞奇
关键词:  低水胶比  速凝剂  早期水化  水化产物  微观结构    
Abstract: Ultra-high performance concrete (UHPC) with low water-binder ratio and high cementitious material content usually occurs a problem of slowly setting and hardening under room temperature curing conditions. In order to promote the popularization and application of UHPC in the initial support of tunnels and rapid repair, it is proposed to use alkaline and alkali-free accelerators (referred to as NA and AS, respectively) to increase the early setting and hardening rate of the paste with low water-binder ratio. In this work, the early hydration behavior and setting and hardening of paste with low water-binder ratio in the presence of accelerators were studied through the tests of the isothermal calorimetry, released ion concentration, setting time and compressive strength. And the phase composition and microstructure evolution of hydration products were analyzed by X-ray diffraction, SEM morphology observation and EDS spectroscopy. The results show that the addition of accelerators accelerates the early hydration rate of the composite-cementitious-materials pastes with low water-binder ratio, and at the same time contributes to the setting and har-dening of the pastes. The acceleration effect of NA on UHPC is better than that of AS. The 1 d compressive strength of NA-2% was 53.3 MPa, and the 28 d strength ratio was 94.9%, while the 1 d compressive strength of AS-4% was 38.9 MPa, and the 28 d strength ratio was 92.3%. Accelerators promote the rapid formation of a large number of hydration products in the pastes with low water-binder ratio, thereby improving the compactness of the early microstructure, and the phase composition of hydration products is significantly affected by the type of accelerators.
Key words:  low water-binder ratio    accelerators    early hydration    hydration products    microstructure
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TU528.53  
基金资助: 国家自然科学基金(12072309);湖南省科技厅湖南创新型省份建设专项(2019RS1059);中国水利水电科学研究院水利部水工程建设与安全重点实验室开放研究基金(202109);湖南省教育厅科学研究项目(21B0123);湖南省研究生科研创新项目(QL20210155)
通讯作者:  *罗正东,湘潭大学土木工程学院副教授、硕士研究生导师。2007年山东农业大学水利水电工程专业本科毕业,2014年湖南大学土木工程专业博士毕业(硕博连读)。目前主要从事混凝土材料、地下结构新型支护材料等方面的研究工作。发表论文20余篇,包括Journal of Materials Research and Technology、Materials Letters、Polymers、 Materials、《岩土工程学报》等。277619580@qq.com   
作者简介:  罗彪,2018年6月、2021年6月分别于湘潭大学获得工学学士学位和硕士学位,在任辉启院士和罗正东副教授的联合指导下进行研究,主要研究领域为超高性能混凝土及深部地下工程新型支护材料。
引用本文:    
罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
LUO Biao, LUO Zhengdong, REN Huiqi, GUO Ruiqi. Effects of Accelerators on the Early Hydration and Microstructure of Paste with Low Water-Binder Ratio. Materials Reports, 2023, 37(9): 21080253-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080253  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21080253
1 Xie H P, Gao F, Ju Y, et al. Advanced Engineering Sciences, 2017, 49(1), 1 (in Chinese).
谢和平, 高峰, 鞠杨, 等. 工程科学与技术, 2017, 49(1), 1.
2 He M C. Journal of China Coal Society, 2014, 39(8), 1409 (in Chinese).
何满潮. 煤炭学报, 2014, 39(8), 1409.
3 Li W P, Wang M Y, Fan P X, et al. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6), 1250 (in Chinese).
李文培, 王明洋, 范鹏贤, 等. 岩石力学与工程学报, 2011, 30(6), 1250.
4 Zhou X P, Bi J, Qian Q H. Chinese Journal of Solid Mechanics, 2013, 34(4), 352 (in Chinese).
周小平, 毕靖, 钱七虎. 固体力学学报, 2013, 34(4), 352.
5 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials, 2015, 101(1), 741.
6 Shao X D, Fan W, Huang Z Y. China Civil Engineering Journal, 2021, 54(1), 1 (in Chinese).
邵旭东, 樊伟, 黄政宇. 土木工程学报, 2021, 54(1), 1.
7 Han S, Cui Y F, Zheng Y F, et al. Journal of the Chinese Ceramic Society, 2019, 47(2), 153 (in Chinese).
韩松, 崔叶富, 郑玉飞, 等. 硅酸盐学报, 2019, 47(2), 153.
8 Chen Q, Wang H, Jiang Z W, et al. Materials Reports, 2019, 33(8), 1312 (in Chinese).
陈庆, 王慧, 蒋正武, 等. 材料导报, 2019, 33(8), 1312.
9 Zhang Y S, Zhang W H, Chen Z Y. Materials Reports, 2017, 31(23), 1 (in Chinese).
张云升, 张文华, 陈振宇. 材料导报, 2017, 31(23), 1.
10 Lee Y, Lim D, Chun B, et al. Journal of Ceramic Processing Research, 2013, 14(1), 87.
11 Han J G, Wang K J, Shi J Y, et al. Construction and Building Materials, 2014, 64, 342.
12 Renan P S, Sergio H P C, Ignacio S, et al. Construction and Building Materials, 2016, 111, 386.
13 Maltese C, Pistolesi C, Bravo A, et al. Cement and Concrete Research, 2007, 37(6), 856.
14 Huang Z Y, Liu Y Q, Li C W. Materials Reports, 2015, 29(4), 116 (in Chinese).
黄政宇, 刘永强, 李操旺. 材料导报, 2015, 29(4), 116.
15 Zeng L P, Qiao M, Wang W, et al. Journal of Building Materials, 2021, 24(1), 31 (in Chinese).
曾鲁平, 乔敏, 王伟, 等. 建筑材料学报, 2021, 24(1), 31.
16 Lothenbach B, Matschei T, Möschner G, et al. Cement and Concrete Research, 2008, 38(1), 1.
17 Xu Q, Stark J. Advances in Cement Research, 2005, 17, 1.
18 Quennoz A, Scrivener K L. Cement and Concrete Research, 2013, 44, 46.
19 Salvador R P, Cavalaro S H P, Cincotto M A, et al. Cement and Concrete Research, 2016, 89(1), 230.
20 Wang Y F, Shi C J, Ma Y H, et al. Construction and Building Materials, 2021, 281, 122557.
21 Zhang G. Journal of the China Railway Society, 2020, 42(1), 112 (in Chinese).
张戈. 铁道学报, 2020, 42(1), 112.
22 Shen Y Q, Li H. Journal of the Chinese Ceramic Society, 2017, 45(5), 679 (in Chinese).
沈业青, 李辉. 硅酸盐学报, 2017, 45(5), 679.
23 Wang L, He Z, Cai X. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(2), 319.
24 Messina F, Ferone C, Colangelo F, et al. Construction and Building Materials, 2015, 86, 169.
25 Zingg A, Winnefeld F, Holzer L, et al. Cement and Concrete Composites, 2009, 31(3), 153.
26 Renan P S, Sergio H P C, Renata M, et al. Cement and Concrete Composites, 2017, 79, 117.
27 Paglia C, Wombacher F, Bohni H. Cement and Concrete Research, 2001, 31(6), 913.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[3] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[4] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[5] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[6] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[7] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[8] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[9] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[10] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[11] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[12] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[13] 王家赫. 喷射混凝土水化度的试验与理论模型研究[J]. 材料导报, 2022, 36(23): 21030064-5.
[14] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[15] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed