Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 22050017-5    https://doi.org/10.11896/cldb.22050017
  金属与金属基复合材料 |
纯铜表面Ta-W合金层的抗高温氧化及摩擦行为
吕绪明1,2,*, 江涛1,2, 张云汉1, 苑建志3, 杨凯3, 党博3, 张平则3
1 核工业理化工程研究院,天津 300180
2 粒子输运与富集技术国防科技重点实验室,天津 300180
3 南京航空航天大学材料科学与技术学院,南京 210016
High Temperature Oxidation Resistance and Wear Property of Ta-W Coating on Pure Copper
LYU Xuming1,2,*, JIANG Tao1,2, ZHANG Yunhan1, YUAN Jianzhi3, YANG Kai3, DANG Bo3, ZHANG Pingze3
1 Research Institute of Physical and Chemical Engineering of Nuclear Industry,Tianjin 300180,China
2 Science and Technology on Particle Transport and Separation Key National Defense Laboratory,Tianjin 300180,China
3 School of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
下载:  全 文 ( PDF ) ( 11793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用双辉等离子渗金属技术在纯铜表面通过添加过渡层金属钽制备Ta-W合金层,通过在400 ℃下恒温氧化试验对比分析铜基体与Ta-W合金层的氧化性能,利用纳米压入和摩擦磨损试验评价Ta-W合金层的硬度和高温耐磨性能。结果表明,Ta-W合金层以胞状结构为主,均匀致密,厚度约为13 μm,各层间元素含量呈梯度分布,界面结合良好,表面为单一的α-W相。在400 ℃恒温氧化50 h后,纯铜基体的氧化增重为13.9 mg/cm2,Ta-W合金层的氧化增重为4.6 mg/cm2,仅为纯铜基体的33.1%。Ta-W合金氧化试验后形成的氧化膜由W18O49和WO3组成,连续致密、无缺陷,完整地覆盖住基体,有效阻碍了氧原子渗入基体,显著改善了纯铜基体的抗氧化性能。与纯铜基体相比,Ta-W合金层的表面纳米硬度从1.07 GPa提高到11.99 GPa,硬度显著提升;Ta-W合金层的平均摩擦系数变化不大,但摩擦系数的波动幅度显著降低,比磨损率由基体的13.77×10-4 mm3/(N·m)降至Ta-W合金层的7.24×10-4 mm3/(N·m),耐磨性得到提高,纯铜基体的磨损机制主要是粘着磨损、氧化磨损和磨粒磨损的共同作用,而Ta-W合金层则表现出轻微的磨粒磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕绪明
江涛
张云汉
苑建志
杨凯
党博
张平则
关键词:  双辉等离子渗金属  Ta-W合金层  微观结构  高温氧化  耐磨性能    
Abstract: In this study,the Ta-W coating was prepared by adding a transition layer of tantalum on the surface of pure copper using double glow plasma surface alloying technology. The oxidation property of copper matrix and Ta-W coating was analyzed by isothermal oxidation test at 400 ℃. The nano-hardness and high temperature wear resistance of Ta-W coating were carried out by using nano-indentation tester and friction wear tester,respectively. The results show that the Ta-W coating exhibits the cellular,compact and homogeneous structure,with the thicknesses of about 13 μm. The element content of each layer presents a gradient distribution,which leads to good interface bonding,and the main phase of the coating is single α-W. After isothermal oxidation for 50 h at 400 ℃,the oxidation mass gain of pure copper was 13.9 mg/cm2,and that of Ta-W coating was 4.6 mg/cm2,about 33.1% of the matrix. The continuous,dense and non-defective oxide film of Ta-W coating is composed of W18O49 and WO3,and the film completely covers the matrix, which could effectively prevent the oxygen into the substrate and significantly improve the oxidation performance. As compared with pure copper substrate,the nano-hardness of the Ta-W coating was significantly increased, from 1.07 GPa to 11.99 GPa. The average friction coefficient of Ta-W coating had a little change,but the fluctuation range of friction coefficient decreased significantly. The specific wear rate decreased from 13.77×10-4 mm3/(N·m) to 7.24×10-4 mm3/(N·m),which corresponded to an improvement of wear resistance. The wear mechanism of the substrate is mainly the combination of adhesion wear,oxidation wear and abrasive wear,while the Ta-W coating shows slight abrasive wear.
Key words:  double glow plasma surface alloying technology    Ta-W coating    microstructure    high temperature oxidation    wear resistance property
发布日期:  2022-12-09
ZTFLH:  TG147  
基金资助: 粒子输运与富集技术国防科技重点实验室开放课题研究基金(SYSJJ-22301)
通讯作者:  *lvxuming2008@126.com   
作者简介:  吕绪明,高级工程师。2010年毕业于山东建筑大学,获工学学士学位,2016年毕业于北京科技大学,获工学博士学位。现任职于中核集团核工业理化工程研究院,目前主要研究领域为金属材料表面处理。在国内外重点学术期刊发表学术论文15篇,申请和授权国家专利5项。
引用本文:    
吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
LYU Xuming, JIANG Tao, ZHANG Yunhan, YUAN Jianzhi, YANG Kai, DANG Bo, ZHANG Pingze. High Temperature Oxidation Resistance and Wear Property of Ta-W Coating on Pure Copper. Materials Reports, 2022, 36(23): 22050017-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050017  或          http://www.mater-rep.com/CN/Y2022/V36/I23/22050017
1 Wang Q S. Development and application of copper and copper alloys,Metallurgical Industry Press,China,2013,pp.23 (in Chinese).
王强松. 铜及铜合金开发与应用,冶金工业出版社,2013,pp.23.
2 Maki K,Ito Y,Matsunaga H,et al. Scripta Materialia,2013,68(10),777.
3 Barella S,Gruttadauria A,Mapelli C,et al. Engineering Failure Analysis,2014,36,432.
4 Wang K. Metal silicide based composite coating deposited on copper using pulse laser-induction cladding. Ph.D. Thesis,Huazhong University of Science and Technology,China,2017 (in Chinese).
王珂. 纯铜表面脉冲激光-感应复合熔覆制备金属硅化物基涂层研究. 博士学位论文,华中科技大学,2017.
5 Liu C J. World Nonferrous Metals,2018,1(2),17 (in Chinese).
刘春佳. 世界有色金属,2018,1(2),17.
6 Zhu Y,Sun J T,Yan L S,et al. Journal of Functional Materials,2019,50(6),6206 (in Chinese).
朱阳,孙建涛,闫联生,等. 功能材料,2019,50(6),6206.
7 Zhang F L,Wang X,Song K Q,et al. Surface Technology,2020,49(9),141 (in Chinese).
张福林,王旋,宋凯强,等. 表面技术,2020,49(9),141.
8 Jiang F,Zhang Y,Sun N,et al. Applied Surface Science,2014,317,867.
9 Liu Y H,Zhang Y C,Liu Q Z,et al. Fusion Engineering & Design,2012,87(11),1861.
10 Wang T G,Chen J L,Chen Y,et al. Journal of Nuclear Materials,2007,363-365,1294.
11 Monclús S M A,Karlik M,Callisti M,et al. Thin Solid Films,2014,571,275.
12 Meng Y,Zhang J,Duan C,et al. Advanced Powder Technology,2015,26(2),392.
13 Jia C C,Jin X H,Zhao J,et al. Powder Metallurgy Technology,2001,19(3),148 (in Chinese).
贾成厂,金雪华,赵军,等. 粉末冶金技术,2001,19(3),148.
14 Zhang J,Huang Y,Wang Z,et al. Journal of Alloys and Compounds,2019,774,939.
15 Xi W,Ding W,Yu S,et al. Surface and Coatings Technology,2019,359,426.
16 Qiu Z K,Zhang P Z,Wei D B,et al. Surface and Coatings Technology,2015,278,92.
17 Wang Q,Zhang P Z,Wei D B,et al. Materials & Design,2013,52,265.
18 Zhang L B,Wei D B,Zhang P Z,et al. Surface Technology,2018,47(4),17 (in Chinese).
张李波,魏东博,张平则,等. 表面技术,2018,47(4),17.
19 Dang B,Tian T,Yang K,et al. Coatings,2020,10(10),926.
20 Gao Y,Xu J Y,Gao Q,et al. Engineering Science of China,2008,10(2),26 (in Chinese).
高原,徐晋勇,高清,等. 中国工程科学,2008,10(2),26.
21 Broszeit E,Matthes B,Herr W,et al. Surface and Coatings Technology,1993,58(1),29.
22 Lee S L,Doxbeck M,Mueller J,et al. Surface and Coatings Technology,2004,177-178,44.
23 Li X,Zhang P. Acta Metallurgica Sinica,2010,23(3),215.
24 Cifuentes S C,Monge M A,Prez P. Corrosion Science,2012,57,114.
25 Oliver W C,Pharr G M. Journal of Materials Research,1992,7(6),1564.
[1] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[2] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[3] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[4] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[5] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[6] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[7] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[8] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[9] 徐璐, 王华伟, 陈伟峰, 王宁, 曾超, 刘伯军, 张明耀. 接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究[J]. 材料导报, 2022, 36(21): 21070096-6.
[10] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[11] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[12] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[13] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[14] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[15] 张向东, 蔡习军, 蔡飞, 张世宏, 陈利. 钛合金表面不同多层结构Cr/CrAlN涂层的制备及磨损性能[J]. 材料导报, 2022, 36(15): 21020062-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed