Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 21050274-7    https://doi.org/10.11896/cldb.21050274
  无机非金属及其复合材料 |
碱激发锌渣胶凝材料设计制备与微观结构分析
徐县, 康晶, 蔡新华*, 王维康
武汉大学水资源与水电工程科学国家重点实验室,武汉 430072
Design and Microstructure Analysis of Alkali-activated Zinc Slag Cementitious Materials
XU Xian, KANG Jing, CAI Xinhua*, WANG Weikang
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
下载:  全 文 ( PDF ) ( 7008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于对锌渣固体废弃物的再利用,本工作以锌渣为原材料制备碱激发锌渣胶凝材料,采取正交试验研究了化学激发下液固比、水玻璃模数及水泥掺量三个因素对碱激发锌渣胶凝材料体系力学性能的影响,并利用XRD和SEM等方法分析了碱激发锌渣胶凝材料体系的微观结构,同时在优选配比基础上探究了温度和比表面积对碱激发锌渣胶凝材料体系的影响规律,最后分析了碱激发锌渣胶凝材料对锌离子的固化能力。结果表明:碱激发锌渣胶凝材料体系的抗压强度受水泥掺量影响最大,其次是液固比和水玻璃模数;试验中水泥掺量10%(质量分数)、液固比0.2、水玻璃模数0.8为最优配合比,所得材料的28 d抗压强度可达56.5 MPa,物理激发中采用蒸养方式和增大锌渣粉比表面积方式可提高其早期强度;碱激发锌渣胶凝材料的水化产物是以C-(A)-S-H凝胶为主的非晶凝胶相,属于α-C-S-H型凝胶,其致密的三维结构不仅对强度有积极作用,还有较好的固化Zn2+的能力,这为锌渣的二次利用提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐县
康晶
蔡新华
王维康
关键词:  锌渣  正交试验  抗压强度  碱激发材料  微观结构  固化离子    
Abstract: Taking zinc slag as raw material, this work prepared alkali-activated zinc slag cementitious material, based on the reuse of zinc slag solid waste. The orthogonal test was adopted to study the influence of ratio of liquid to solid, water glass modulus and cement content on the mechanical properties of alkali-activated zinc slag cementitious material system. And then, we analyzed the microstructure of alkali-activated zinc slag cementitious materials with different mixing ratios and explored the effects of temperature and specific surface area based on the optimal ratio by XRD and SEM. Finally, we tested the curing ability of alkali-activated zinc slag cementitious material to the zinc ion. The results show that the compressive strength of alkali-activated zinc slag cementitious material system is most affected by cement content, followed by ratio of liquid to solid and water glass modulus. In this study, under the condition of the cement content 10%, the ratio of liquid to solid 0.2, and the water glass modulus 0.8, the optimum mixing ratio is obtained, and the 28 d compressive strength can reach 56.5 MPa. In addition, the physical methods of steam curing and increasing the specific surface area of zinc slag powder can improve the early strength. The hydrated product of alkali-activated zinc slag cementitious materials is an amorphous gel phase mainly composed of C-(A)-S-H gel, which belongs to α-C-S-H gel. Its dense three-dimensional structure not only provides a positive effect for strength, but also has a good ability to solidify Zn2+, which provides a new way for the second utilization of zinc slag.
Key words:  zinc slag    orthogonal test    compressive strength    alkali excitation material    microstructure    solidified ion
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TU528  
基金资助: 长江勘测规划设计研究院开放创新基金项目(CX2020K05);国家自然科学基金(51579195)
通讯作者:  * caixinhua@whu.edu.cn   
作者简介:  徐县,2020年6月于武汉大学获得工学学士学位,现为武汉大学水利水电学院硕士研究生,在蔡新华副教授的指导下开展研究工作。目前研究方向主要为碱激发胶凝材料制备和典型固体废弃物综合利用。
蔡新华,武汉大学水利水电学院副教授、硕士研究生导师。2003年和2005年于哈尔滨工业大学分别获得无机非金属材料学士和材料学硕士学位,2010年于大连理工大学获得结构工程专业博士学位,2013年到武汉大学工作至今。主要研究方向:先进水泥基复合材料设计与应用、混凝土抗冲磨性能与耐久性寿命设计、水泥基材料微结构表征等。主持国家自然科学基金项目3项,近五年发表论文30余篇。
引用本文:    
徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
XU Xian, KANG Jing, CAI Xinhua, WANG Weikang. Design and Microstructure Analysis of Alkali-activated Zinc Slag Cementitious Materials. Materials Reports, 2022, 36(22): 21050274-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050274  或          http://www.mater-rep.com/CN/Y2022/V36/I22/21050274
1 Zhang Y H, Tang Y H, Chen J H, et al. Nonferrous Metals Engineering, 2021,11(2), 120(in Chinese).
章艳红,唐玉红,陈俊华, 等.有色金属工程, 2021,11(2), 120.
2 Deng Q F. Research on the comprehensive utilization of indigenous zinc smelting slag. Master's Thesis, Central South University, China, 2013(in Chinese).
邓秋凤. 土法炼锌废渣资源化利用的研究. 硕士学位论文, 中南大学, 2013.
3 Lei H Z, Yang G C, Li Y G, et al. Yunnan Metallurgy, 2018,47(4), 63(in Chinese).
雷华志,杨光灿,李雨耕, 等.云南冶金,2018,47(4), 63.
4 Omran M, Fabritius T, Yu Y W, et al.Journal of Sustainable Metallurgy, 2021, 7, 15.
5 Xie K, Wang H B, Liu S P, et al. Nonferrous Metals(Extractive Metallurgy), 2019(7), 30(in Chinese).
谢铿,王海北,刘三平, 等.有色金属(冶炼部分),2019(7), 30.
6 He Z X, Xiao Q C, Zhou X Y, et al. Journal of Central South University(Science and Technology), 2015, 46(10), 3961(in Chinese).
何哲祥,肖祈春,周喜艳, 等.中南大学学报(自然科学版),2015,46(10), 3961.
7 Wang Y J, Pan M Y, Zhang Z R, et al. Guangzhou Chemical Industry, 2019,47(16), 71(in Chinese).
王艳君,潘梦雅,张择瑞, 等.广州化工, 2019,47(16), 71.
8 Zhang S Z, Gong K C. Journal of Materials Science and Engineering, 2003,21(3),430(in Chinese).
张书政, 龚克成. 材料科学与工程学报, 2003,21(3),430.
9 Gomes K C, Carvalho M, Diniz D D P, et al. Revista Matéria, 2019, 24, 4.
10 Çelikten S, Sarıdemir M, Özgür Deneme I·. Construction and Building Materials, 2019, 217, 50.
11 Shaikh F U A. International Journal of Sustainable Built Environment, 2016, 5(2), 277.
12 You N Q, Li B L, Cao R L, et al. Construction and Building Materials, 2019, 227,116614
13 Xie F Z, Liu Z, Zhang D W, et al.Construction and Building Materials,2020, 252,119132.
14 Jiang G Z, Wu A X, Wang Y M, Chinese Journal of Engineering, 2020,42(8), 963(in Chinese)
姜关照,吴爱祥,王贻明. 工程科学学报,2020,42(8), 963.
15 Wang A G, Zheng Y, Zhang Z H, et al. Engineering,2020,6(6),695.
16 De Pereira D S T, Da Silva F J, Porto A B R, et al. Journal of Materials Research and Technology, 2018, 7(4), 606.
17 Nath S K. Journal of Hazardous Materials, 2020, 387,121673.
18 Chen W, Peng R, Straub C, et al. Construction and Building Materials, 2020, 236,117745.
19 Zhang P P, Muhammada F, Yu L, et al. Construction and Building Materials, 2020,249,118759.
20 Yu L, Fang L, Zhang P, et al.International Journal of Environmental Research and Public Health, 2021,18,9960.
21 Jiang Y F, Wu L, Liu Y, New Building Materials, 2019, 46(9), 57(in Chinese).
姜玉凤,吴璐,刘宇.新型建筑材料,2019,46(9), 57.
22 Zheng W Z, Zou M N, Wang Y. Journal of Building Structures, 2019, 40(1),28(in Chinese).
郑文忠, 邹梦娜, 王英.建筑结构学报, 2019,40(1),28.
23 Lei Y S. Study on microstructure on hydrated calcium silicate and inf-luence for the performance of fly ash baking-free bricks. Master's Thesis, North University of China, China, 2014(in Chinese).
雷永胜.水化硅酸钙微结构及其对粉煤灰免烧砖性能影响的研究. 硕士学位论文, 中北大学,2014.
24 Zhao J, Zhang Y X, Zhang Y W.Journal of Wuhan University of Techno-logy(Materials Science), 2017, 32(6), 1388.
25 Shrivas R, Paramkusam B R, Dwivedi S B. KSCE Journal of Civil Engineering, 2021, 25(5), 1600.
26 Hou Y F. Cementitious materials, China Electric Power Press, China, 2012, pp.126(in Chinese).
侯云芬.胶凝材料,中国电力出版社,2012, pp. 126.
27 Yi J S. Study on physical and mechanical properties of water glass superfine slag powder cement grouting material. Master's Thesis, Anhui University of Science and Technology, China, 2020(in Chinese).
易健胜. 水玻璃-超细矿渣粉-水泥注浆材料物理力学性能研究. 硕士学位论文. 安徽理工大学, 2020.
28 Jiang G Z, Wu A X, Wang Y M, et al. Chinese Journal of Engineering, 2017,39(9),1305(in Chinese).
姜关照, 吴爱祥, 王贻明, 等.工程科学学报, 2017,39(9),1305.
29 Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al.Cement and Concrete Research, 2011, 41(9), 923.
30 Yang D, Lu M Y, Song D, et al. Materials Reports, 2021,35(Z1),644(in Chinese).
杨达, 卢明阳, 宋迪, 等.材料导报, 2021,35(Z1),644.
31 Peng H, Chen Z K, Cui C, et al. Journal of Building Materials, 2017,20(3),379(in Chinese).
彭晖, 陈治坤, 崔潮, 等.建筑材料学报, 2017,20(3),379.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[5] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[6] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[7] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[8] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[9] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[10] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[11] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[12] 田青, 屈孟娇, 祁帅, 姚田帅, 张苗, 许鸽龙, 邓德华. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 21040170-5.
[13] 徐璐, 王华伟, 陈伟峰, 王宁, 曾超, 刘伯军, 张明耀. 接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究[J]. 材料导报, 2022, 36(21): 21070096-6.
[14] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[15] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed