Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 21040170-5    https://doi.org/10.11896/cldb.21040170
  无机非金属及其复合材料 |
低强型水泥乳化沥青砂浆抗压强度的计算模型
田青1,2, 屈孟娇1,2, 祁帅1,2, 姚田帅1,2, 张苗1,2, 许鸽龙1,2,*, 邓德华3
1 河南大学开封市工程修复与材料循环工程技术研究中心,河南 开封 475004
2 绿色建筑材料国家重点实验室,北京 100024
3 中南大学土木工程学院,长沙 410075
Calculation Model for Compressive Strength of Low Strength Cement Asphalt Mortar
TIAN Qing1,2, QU Mengjiao1,2, QI Shuai1,2, YAO Tianshuai1,2, ZHANG Miao1,2, XU Gelong1,2,*, DENG Dehua3
1 Kaifeng Research Center for Engineering Repair and Material Recycle, Henan University, Kaifeng 475004, Henan,China
2 State Key Laboratory of Green Building Materials, Beijing 100024, China
3 School of Civil Engineering, Central South University, Changsha 410075, China
下载:  全 文 ( PDF ) ( 1787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 依据高沥灰比水泥乳化沥青砂浆(CA砂浆)的物理结构模型,基于颗粒增强聚合物基复合材料的相关理论,建立了CA砂浆抗压强度与组成参数的数学模型。结果表明:水泥-沥青胶凝材料(CA胶凝材料)中,水化产物对沥青的增强作用侧重于自身的整体含量,Piggott模型适合描述CA胶凝材料抗压强度与水化产物体积分数之间的关系。砂子对CA胶凝材料的增强作用侧重于自身的个体属性,Nielsen模型适合表征低强型CA砂浆抗压强度与砂子含量间的关系。经代入相关文献中的数据进行验证,所建模型具有良好的普适性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田青
屈孟娇
祁帅
姚田帅
张苗
许鸽龙
邓德华
关键词:  水泥乳化沥青砂浆  高沥灰比  抗压强度  配合比参数    
Abstract: According to the physical structure model of low strength cement asphalt mortar (CA mortar), in reference to the particulate reinforcement theo-ries for polymer composites, the quantitative relationship between compressive strength and composition parameters of CA mortar was obtained.Results show that in cement asphalt binder (CAB), the reinforcement effect of hydration product on asphalt focuses on its overall content, and thus Piggott model is suitable for describing the relationship between compressive strength and hydration products volume fraction of CAB.The enhancement effect of sand on CAB focuses on individual attributes, so Nielsen model is suitable for characterizing the relationship between compressive strength and sand content of CA mortar.Verified by the data in the relevant literature, the established model has good universality.
Key words:  cement asphalt mortar    high asphalt to cement ratio    compressive strength    mix proportion parameter
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TU528.42  
基金资助: 绿色建筑材料国家重点实验室开放基金(2021GBM01);河南省高等学校重点科研项目计划(22B560002)
通讯作者:  * since2020@henu.edu.cn   
作者简介:  田青,河南大学土木建筑学院副教授、硕士研究生导师。2017年博士毕业于中南大学,在国内外重要期刊发表论文10余篇,主要研究方向为高性能水泥基材料、固体废弃物综合利用。
许鸽龙,河南大学土木建筑学院副教授、硕士研究生导师。2012年本科毕业于河北理工大学,2015年硕士毕业于河南大学,2020年博士毕业于武汉理工大学。发表论文10篇,主要研究方向为低碳水泥基材料、固体废弃物综合利用。
引用本文:    
田青, 屈孟娇, 祁帅, 姚田帅, 张苗, 许鸽龙, 邓德华. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 21040170-5.
TIAN Qing, QU Mengjiao, QI Shuai, YAO Tianshuai, ZHANG Miao, XU Gelong, DENG Dehua. Calculation Model for Compressive Strength of Low Strength Cement Asphalt Mortar. Materials Reports, 2022, 36(22): 21040170-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040170  或          http://www.mater-rep.com/CN/Y2022/V36/I22/21040170
1 Yuan Q, Deng D H, Wang Y.Chinese Science Bulletin, 2020, 65(22), 2384(in Chinese).
元强, 邓德华, 王勇.科学通报, 2020, 65(22), 2384.
2 Wang Y, Yuan Q, Deng D H, et al. Construction and Building Mate-rials, 2017, 150, 714.
3 中华人民共和国铁道部.客运专线铁路CRTS I型板式无砟轨道水泥乳化沥青砂浆暂行技术条件.中国铁道出版社, 2008.
4 中华人民共和国铁道部.客运专线铁路CRTS II型板式无砟轨道水泥乳化沥青砂浆暂行技术条件.中国铁道出版社, 2008.
5 Tian Q, Deng D H, Peng J W.China Railway Science, 2016, 37(2), 1(in Chinese).
田青, 邓德华, 彭建伟.中国铁道科学, 2016, 37(2), 1.
6 Wang Q, Yan P Y, A R H, et al. Journal of Materials in Civil Enginee-ring, 2011, 23(9), 1353.
7 Deng D H, Tian Q, Liu Z Q, et al. Scientia Sinica (Technologica), 2014, 44(7), 661(in Chinese).
邓德华, 田青, 刘赞群, 等.中国科学: 技术科学, 2014, 44(7), 661.
8 Wang Q, Yan P Y, A R H.Journal of Building Materials, 2009,12(5), 519(in Chinese).
王强, 阎培渝, 阿茹罕.建筑材料学报, 2009, 12(5), 519.
9 Tan Y Q, Ouyang J, Wang J F, et al. Journal of the China Railway Society, 2012, 34(7), 122(in Chinese).
谭忆秋, 欧阳剑, 王金凤, 等.铁道学报, 2012, 34(7), 122.
10 Wan Y, Hong J X, Xu J, et al. Journal of Building Materials, 2013, 16(2), 261(in Chinese).
万赟, 洪锦祥, 徐静, 等.建筑材料学报, 2013, 16(2), 261.
11 Zhu H S, Zeng X H, Liu H C, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 644(in Chinese).
朱华胜, 曾晓辉, 刘海川, 等.硅酸盐学报, 2020, 48(5), 644.
12 Tian Q, Deng D H, Cai J W.Journal of Building Materials, 2018, 21(5), 841(in Chinese).
田青, 邓德华, 蔡基伟.建筑材料学报, 2018, 21(5), 841.
13 Tian Q, Zhang M, Cai J W, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(6), 1722(in Chinese).
田青, 张苗, 蔡基伟, 等.硅酸盐通报, 2020, 39(6), 1722.
14 Fang L, Yuan Q, Deng D H, et al. Journal of Materials in Civil Engineering, 2017, 29(8), 04017080.
15 Sato K.Progress in Organic Coatings, 1976, 4(4), 271.
16 Ahmed S, Jones F.Journal of Materials Science, 1990, 25(12), 4933.
17 Goodier J.Journal of Applied Mechanics, 1933, 1, 39.
18 Toussaint A.Progress in Organic Coatings, 1974, 2(3), 237.
19 Leidner J, Woodhams R.Journal of Applied Polymer Science, 1974, 18(6), 1639.
20 Hojo H, Toyoshima W, Tamura M, et al. Polymer Engineering and Science, 1974, 14(9), 604.
21 Nicolais L.Polymer Engineering and Science, 1975, 15(3), 137.
22 Nielsen L.Journal of Applied Polymer Science, 1966, 10(1), 97.
23 Piggott M.Journal of Applied Polymer Science, 1974, 18(6), 1619.
24 Landon G, Lewis G, Boden G.Journal of Materials Science, 1977, 12(8), 1605.
25 Fang L, Yuan Q, Pan Y R, et al. Journal of Wuhan University of Technology-Material Science Edition, 2017, 32(6), 1379.
26 Tang M, He Z M.Journal of Shenyang Architectural Engineering College, 1985, 1(Z1), 83(in Chinese).
唐明, 何振明.沈阳建筑工程学院学报, 1985, 1(Z1), 83.
27 Yang J B, Yan P Y, Kong X M, et al. Scientia Sinica Technologica, 2010, 40(8), 959(in Chinese).
杨进波, 阎培渝, 孔祥明, 等.中国科学, 2010, 40(8), 959.
28 Wang Z M.The interface chemistry phenomena and rheological properties of “cement-water-superplasticizer” system.Ph.D.Thesis, Beijing University of Technology, China, 2006(in Chinese).
王子明.“水泥-水-高效减水剂”系统的界面化学现象与流变性能.博士学位论文, 北京工业大学, 2006.
29 Wang T, Hu S G, Wang F Z, et al. Railway Engineering, 2008, 3(2), 109(in Chinese).
王涛, 胡曙光, 王发洲, 等.铁道建筑, 2008, 3(2), 109.
30 Kong X M, Liu Y L, Yan P Y.Journal of Building Materials, 2010, 13(2), 187(in Chinese).
孔祥明, 刘永亮, 阎培渝.建筑材料学报, 2010, 13(2), 187.
31 Wang Q, A R H, Yan P Y.Journal of Railway Science and Engineering, 2008, 5(6), 1(in Chinese).
王强, 阿茹罕, 阎培渝.铁道科学与工程学报, 2008, 5(6), 1.
32 Fu Q, Xie Y J, Zheng K R, et al. Journal of the Chinese Ceramic Society, 2014, 42(5), 642(in Chinese).
傅强, 谢友均, 郑克仁, 等.硅酸盐学报, 2014, 42(5), 642.
33 Tang S.Water absorbing and evaporating characteristics of cement asphalt mortar and effect of wetting-drying cycles on its properties.Master's Thesis, Central South University, China, 2014(in Chinese).
唐斯.水泥乳化沥青砂浆的吸水和失水特性及干湿循环对性能的影响.硕士学位论文, 中南大学, 2014.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[5] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[6] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[7] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[8] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[9] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[10] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[11] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[12] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[13] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[14] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[15] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed