Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 20120126-6    https://doi.org/10.11896/cldb.20120126
  无机非金属及其复合材料 |
烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响
孙赫男1,2, 关岩1,2, 毕万利1,2, 孙美硕2
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
2 辽宁科技大学科大峰驰镁建材研究院,辽宁 鞍山 114051
Effect of Crystal Characteristics of Calcined Magnesia Powder on Mechanical Properties of Magnesium Phosphate Cement
SUN Henan1,2, GUAN Yan1,2, BI Wanli1,2, SUN Meishuo2
1 School of Material and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
2 Research Institute of Keda Fengchi Magnesium Building Materials, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
下载:  全 文 ( PDF ) ( 7169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析磷酸镁水泥(MPC)力学性能与烧结氧化镁粉中MgO晶体特征间的相关性,本工作利用不同烧结条件下生产的氧化镁粉制备了MPC,分析了烧结氧化镁粉中MgO含量及其晶粒尺寸对MPC的凝结时间和抗压强度的影响,并利用X射线衍射仪(XRD)、综合热分析(TG-DSC)、扫描电子显微镜(SEM)和压汞法(MIP)等测试手段表征了利用不同烧结氧化镁粉制备的MPC体系在相同水化时间下的相组成、微观形貌和孔结构的变化。结果表明:MPC的凝结时间随着MgO平均晶粒尺寸的增大而延长;抗压强度随着MgO平均晶粒尺寸的增大而增大。其中,利用MgO含量为92.83%、晶粒平均尺寸为129.45 nm的烧结氧化镁制备的MPC凝结时间最长,力学性能最优,其初凝时间为22 min,1 d和28 d抗压强度分别可达35.8 MPa、77.6 MPa。此外,MgO平均晶粒尺寸较MgO含量对MPC力学性能的影响更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙赫男
关岩
毕万利
孙美硕
关键词:  磷酸镁水泥  烧结氧化镁粉  晶粒尺寸  抗压强度  相组成    
Abstract: To study the relativity between mechanical properties of magnesium phosphate cement (MPC) and the crystal characteristics of MgO in calcined magnesia powder, the MPC was prepared using calcined magnesia powder produced by different calcination conditions. The effect of content and crystalline size of MgO in calcined magnesia powder on the setting time and compressive strength of MPC was analyzed. Moreover, the variations of phase composition,microstructure and pore structure of MPC prepared using different calcined magnesia powder at the same hydration time were characterized by X-ray diffraction (XRD), thermo gravimetric-differential scanning calorimetry(TG-DSC), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP). The results show that the setting time and the compressive strength of MPC were increased with the average crystallite size of MgO. The MPC prepared by calcined magnesia powder with MgO content of 92.83% and average crystallite size of 129.45 nm has the longest setting time and the highest compressive strength. And its initial setting time is 22 min, 1 d and 28 d compressive strength can reach to 35.8 MPa and 77.6 MPa, respectively. In addition, the average crystalline size of MgO has a greater effect on the mechanical properties of MPC than MgO content.
Key words:  magnesium phosphate cement    calcined magnesia powder    crystalline size    compressive strength    phase composition
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TQ172  
基金资助: 国家重点研发计划(2020YFC1909304);国家自然科学基金(51778101)
通讯作者:  15841293909@163.com   
作者简介:  孙赫男,2018年6月毕业于营口理工学院,获得工学学士学位;2021年3月毕业于辽宁科技大学,获得工学硕士学位。目前主要研究领域为镁质胶凝材料。
关岩,辽宁科技大学材料与冶金学院副教授、硕士研究生导师。1992年辽宁科技大学材料科学与工程专业本科毕业,2003年北京科技大学材料学硕士毕业后到辽宁科技大学工作至今,现任辽宁科技大学材料与冶金学院实验中心主任。目前主要从事路面快速修补材料的研发与应用、镁质胶凝材料微观结构与水化机理、低品位菱镁矿高值高效制备绿色镁建材技术等方面的研究工作。发表论文40余篇,包括Cement and Concrete Research、Materials、《建筑材料学报》《硅酸盐学报》等。
引用本文:    
孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
SUN Henan, GUAN Yan, BI Wanli, SUN Meishuo. Effect of Crystal Characteristics of Calcined Magnesia Powder on Mechanical Properties of Magnesium Phosphate Cement. Materials Reports, 2022, 36(19): 20120126-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120126  或          http://www.mater-rep.com/CN/Y2022/V36/I19/20120126
1 Qiao F, Chau C K, Li Z J. Construction and Building Materials, 2009, 24(5), 695.
2 Yang Q B, Wu X L. Cement and Concrete Research, 1999, 29(3), 389.
3 Yang Q B, Zhang S Q, Wu X L. Cement and Concrete Research, 2002, 32(1), 165.
4 Costato M. IL Nuovo Cimento D, 2006, 17(5), 545.
5 Coppola L, Coffetti D, Crotti E. Construction and Building Materials, 2018, 173, 111.
6 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
7 Cai G C, Zhao J. KSCE Journal of Civil Engineering, 2016, 20(7), 2832.
8 Aggarwal L K, Thapliyal P C, Karade S R. Construction and Building Materials, 2005, 21(2), 379.
9 Jia X W, Li J M, Wang P, et al. Construction and Building Materials, 2019, 229, 116927.
10 Lai Z Y, Qian J S, Lu Z Y, et al. Journal of Wuhan University of Technology, 2011, 33(10), 16 (in Chinese).
赖振宇, 钱觉时, 卢忠远, 等. 武汉理工大学学报, 2011, 33(10), 16.
11 Yang J M, Qian C X, Zhang Q H, et al. Journal of Southeast University (Natural Science Edition), 2010, 40(2), 373 (in Chinese).
杨建明, 钱春香, 张青行, 等. 东南大学学报(自然科学版), 2010, 40(2), 373.
12 Chang Y, Shi C J, Yang N, et al. Journal of the Chinese Ceramic Society, 2013, 41(4), 492 (in Chinese).
常远, 史才军, 杨楠, 等. 硅酸盐学报, 2013, 41(4), 492.
13 Tan Y S, Yu H F, Li Y, et al.Journal of the Chinese Ceramic Society, 2014, 42(11), 1362 (in Chinese).
谭永山, 余红发, 李颖, 等.硅酸盐学报, 2014, 42(11), 1362.
14 Ren Q, Jiang Z W, Ma J W. Journal of Building Materials, 2016, 19(6), 1062 (in Chinese).
任强, 蒋正武, 马敬畏. 建筑材料学报, 2016, 19(6), 1062.
15 Muhammad R A, Chen B. Construction and Building Materials, 2018, 190, 466.
16 Zheng D D, Ji T, Wang C Q, et al. Construction and Building Materials, 2016, 106, 415.
17 Chen B, Yang X Y, Liu N. Advanced Materials Research, 2012, 1616(450-451), 796.
18 Hong L T, Lubell A S. ACI Materials Journal, 2015, 112(4), 587.
19 Gao M, Liu N, Chen B.Journal of Building Materials, 2020, 23(1), 29 (in Chinese).
高明, 刘宁, 陈兵. 建筑材料学报, 2020, 23(1), 29.
20 Sun M S, Guan Y, Bi W L,et al. New Building Materials, 2018, 45(11), 56 (in Chinese).
孙美硕, 关岩, 毕万利, 等. 新型建筑材料, 2018, 45(11), 56.
21 Li Y, Dong J M, Xiao X Y, et al. Journal of Salt Lake Research, 2020, 28(2), 15 (in Chinese).
李颖, 董金美, 肖学英, 等. 盐湖研究, 2020, 28(2), 15.
22 Guo J L, Shen Y N. Journal of Inner Mongolia Normal University (Natural Science Edition), 2009, 38(3), 357 (in Chinese).
郭金玲, 沈岳年. 内蒙古师范大学学报(自然科学汉文版), 2009, 38(3), 357.
23 Zhao J Y, Xu J H, Cui C Y, et al. Construction and Building Materials, 2020, 258, 119683.
24 Li Y, Li Z J, Pei H F, et al. Construction and Building Materials, 2016, 102, 233.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[5] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[6] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[7] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[8] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[9] 谢功园, 王轶, 陈宇强, 刘文辉, 潘素平, 宋宇峰, 刘阳, 谭欣荣. 换向轧制对铜晶粒尺寸高温热稳定性的影响[J]. 材料导报, 2022, 36(18): 21010236-7.
[10] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[11] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[12] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[13] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[14] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[15] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed