Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20110015-7    https://doi.org/10.11896/cldb.20110015
  无机非金属及其复合材料 |
基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究
吴贤国1, 王雷1, 陈虹宇2,*, 冯宗宝1, 覃亚伟1,3, 徐文胜3
1 华中科技大学土木与水利工程学院,武汉 430074
2 南洋理工大学土木工程与环境学院,新加坡 639798
3 武汉华中科大检测科技有限公司,武汉 430074
Multi-Objective Optimization of High-Performance Concrete Durability Mix Ratio Based on RF-NSGAⅡ
WU Xianguo1 , WANG Lei1, CHEN Hongyu2,* , FENG Zongbao1, QIN Yawei1,3, XU Wensheng3
1 School of Civil and Hydraulic Engineerng, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Civil and Environmental Engineering, Nanyang University of Technology, Singapore 639798
3 Wuhan Huazhong University of Science and Technology Test Technology Co., Ltd., Wuhan 430074, China
下载:  全 文 ( PDF ) ( 4168KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对高寒复杂环境下高性能混凝土耐久性预测和优化问题,本工作研发了一种结合随机森林与带精英策略的非支配排序遗传算法(NSGAⅡ)的混合模型,以实现高精度的混凝土性能预测以及多目标配合比优化。以混凝土耐久性的重要指标氯离子渗透系数和28 d抗压强度为研究目标,基于正交试验设计和工程实际试验样本建立混凝土数据集。利用随机森林对混凝土氯离子渗透系数和强度进行预测,得到氯离子渗透系数和强度与配合比的非线性映射关系函数,将其作为对应优化目标的适应度函数,再引入混凝土成本作为另一个优化目标的适应度函数。依据规范和工程要求,建立原材料及配合比之间的约束,采用NSGAⅡ进行混凝土配合比的多目标优化。研究表明,利用随机森林对混凝土性能进行预测的精度很高,且利用NSGAⅡ算法进行多目标配合比优化的效果很好。将优化配合比方案进行试验验证,发现模型优化结果与实际试验结果误差很小。这说明混凝土配合比符合规范且满足工程项目对耐久性能、强度和工作性能的要求,体现了该模型的智能化、精准化,可对工程实践中混凝土配合比的优化提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴贤国
王雷
陈虹宇
冯宗宝
覃亚伟
徐文胜
关键词:  混凝土配合比优化  氯离子渗透系数  28 d抗压强度  随机森林(RF)  NSGAⅡ    
Abstract: Aiming at the prediction and optimization of the durability of high-performance concrete in the alpine complex environment, this work developed a hybrid model that integrates random forest (RF) with nondominated sorting genetic algorithm-II with elite strategy (NSGAⅡ) to achieve high-precision concrete performance prediction and multi-objective mix ratio optimization. Taking the chloride ion permeability coefficient and 28 d compressive strength, which are important indicators of concrete durability, as the research objective, a concrete data set was established based on the orthogonal experimental design and engineering actual test samples. The random forest model was used to predict the chloride ion permeability coefficient and strength of concrete. A non-linear mapping function of chloride ion permeability coefficient and strength and mix ratio was obtained, which acted as the fitness function of the optimization target, while the concrete cost was introduced as the fitness function of another optimization target. According to the specifications and requirements of the project, the constraints of raw materials and mix ratios were established, and the NSGAⅡ algorithm was applied for multi-objective optimization of concrete mix ratio. Results show that the accuracy of using random forest to predict concrete performance is fairly high, and that the use of NSGAⅡ algorithm for multi-objective mix ratio optimization is quite effective. The optimized mix ratio scheme was tested and verified, and it was found that the error between the model optimization results and the actual test results was very small. It suggests that the concrete mix ratio meets specifications and engineering project requirements of durability, strength and work performance, reflecting the intelligence and precision of the model, which can provide guidance for the optimization of concrete mix ratio in engineering practice.
Key words:  concrete mix ratio optimization    chloride ion permeability coefficient    28 d compressive strength    random forest (RF)    NSGAⅡ
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51378235;71571078;51308240)
通讯作者:  *HONGYU001@e.ntu.edu.sg   
作者简介:  吴贤国,华中科技大学土木与水利工程学院教授,博士研究生导师。1985年7月毕业于武汉大学结构工程专业,获得理学学士学位;1991年7月毕业于清华大学工程管理专业,获得工学硕士学位;2006年5月毕业于华中科技大学工程管理专业,获得博士学位。主要从事土木工程施工与安全管理等研究工作。发表论文200多篇,其中SCI论文60多篇。
引用本文:    
吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
WU Xianguo , WANG Lei, CHEN Hongyu , FENG Zongbao, QIN Yawei, XU Wensheng. Multi-Objective Optimization of High-Performance Concrete Durability Mix Ratio Based on RF-NSGAⅡ. Materials Reports, 2022, 36(17): 20110015-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110015  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20110015
1 Long G C, Yang Z X, Bai C N, et al. Journal of the Chinese Ceramic Society, 2019, 47(7), 855 (in Chinese).
龙广成, 杨振雄, 白朝能, 等.硅酸盐学报, 2019, 47(7), 855.
2 He D L, Shi Y, Luo T L, et al. Journal of Adhesion Science and Techno-logy, 2020, 34(14), 1572.
3 Shaheen F, Pradhan B. American Society of Civil Engineers, 2020, 32(9),04020264.
4 Holt E, Ferreira M, Kousa H, et al. Journal of the Chinese Ceramic Society, 2015, 43(10), 1421 (in Chinese).
Holt E, Ferreira M, Kousa H, 等. 硅酸盐学报, 2015, 43(10), 1421.
5 Jiang Z W, Xu C P, Zhang S.Journal of Building Materials, 2019, 22(4), 499 (in Chinese).
蒋正武, 徐春普, 张盛. 建筑材料学报, 2019, 22(4), 499.
6 Liang K X, Wang Q C, Zhang K, et al. Concrete, 2019 (5), 38 (in Chinese).
梁柯鑫, 王起才, 张凯, 等.混凝土, 2019 (5), 38.
7 Wang L X, Shan X T.Yangtze River, 2014, 45(13), 72 (in Chinese).
王丽学, 单晓婷.人民长江, 2014, 45(13), 72.
8 Fang W C. Research on the method of field rapid testing of concrete impermeability.Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
方维澄. 混凝土抗渗性现场快速检测方法的研究. 硕士学位论文, 哈尔滨工业大学, 2018.
9 Liu Z H. Experimental study on early strength of precast concrete.Master's Thesis, Shandong Jianzhu University, China, 2015 (in Chinese).
刘振华. 预制混凝土早期强度试验研究. 硕士学位论文, 山东建筑大学, 2015.
10 Zheng S S, Zhao P, Shang X Y.China Sciencepaper, 2013, 8(5), 413 (in Chinese).
郑山锁, 赵鹏, 商效瑀. 中国科技论文, 2013, 8(5), 413.
11 Han B, Ji K, Hu Y F, et al. Journal of Mining & Safety Engineering, 2020, 38(3),584 (in Chinese).
韩斌, 吉坤, 胡亚飞, 等. 采矿与安全工程学报, 2020, 38(3),584.
12 Behforouz B, Memarzadeh P, Eftekhar M, et al. Computers and Concrete, 2020, 25(2), 119.
13 Zhao W L.Concrete, 2011(2), 46(in Chinese).
赵万里. 混凝土, 2011(2), 46.
14 Yan C L, Zhang A L, Hu H B, et al. Cement Engineering, 2016 (5), 19 (in Chinese).
闫春岭, 张爱玲, 胡海波, 等. 水泥工程, 2016 (5), 19.
15 Fan L Q, Lyu G F.Electronic Design Engineering, 2016, 24(8), 80 (in Chinese).
范立强, 吕国芳. 电子设计工程, 2016, 24(8), 80.
16 Li S, Du Y J.Concrete, 2016 (3), 44 (in Chinese).
李松, 杜应吉. 混凝土, 2016 (3), 44.
17 Huang M, Zhao Y R, Yuan J J, et al. Journal of Henan University of Engineering(Natural Science Edition), 2019, 31(4), 22 (in Chinese).
皇民, 赵玉如, 苑俊杰, 等. 河南工程学院学报(自然科学版), 2019, 31(4), 22.
18 Zhang J F, Huang Y M, Wang Y H, et al. Construction and Building Materials, 2020, 253, 119208.
19 Zhu Y, Xu W Y, Luo G L, et al. Artificial Intelligence in Medicine, 2020, 103, 101811.
20 Golrang A, Golrang A M, Yayilgan S Y, et al. Electronics, 2020, 9(4),577.
21 Pomalis C S M, Leborgne R C, Herrera-Orozco A R, et al. Electric Power Systems Research, 2019, 176, 105.
22 Breiman L. Machine Learning, 2001, 45(1), 5.
23 Yao H, Li X D, Pang H J, et al. Atmospheric Research, 2020, 244, 105093.
24 Zhu Y, Xu W Y, Luo G L, et al. Artificial Intelligence in Medicine, 2020, 103, 101811.
25 Lu S L, Li Q P, Bai L, et al. Energy Conversion and Management, 2019, 197, 111864.
26 Guo K R. Risk prediction and evaluation of P2P network loan platform based on random forest model.Master's Thesis, Tianjin University of Finance and Economics, China, 2019 (in Chinese).
郭凯瑞. 基于随机森林模型的P2P网贷平台风险预测与评价. 硕士学位论文, 天津财经大学, 2019.
27 Deb K, Pratap A, Agarwal S, et al. IEEE Transactions on Evolutionary Computation, 2002, 6(2), 182197.
28 Lee U, Park S, Lee I. Energy, 2020, 196, 117090.
29 Tabatabaei M, Salehpour J A, Hosseini S A. International Soil and Water Conservation Research, 2019, 7(2), 119.
30 Gunjan, Sharma A K, Verma K. Wireless Networks, 2020, 26(5), 3637.
31 Lai C G, Li L, Zhou Y T, et al. Journal of Chongqing University of Technology(Natural Science), 2022, 36(4), 19 (in Chinese).
赖晨光,李亮,周毓婷,等.重庆理工大学学报(自然科学), 2022, 36(4), 19.
[1] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[2] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[3] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[4] 伍勇华, 李莹, 党梓轩, 何娟, 齐昭栋. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 21010120-5.
[5] 赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
[6] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[7] 王晨宇, 韦经杰, 龙武剑, 董必钦. 纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展[J]. 材料导报, 2022, 36(15): 20120133-13.
[8] 段运, 杨子江, 王起才, 张戎令, 吴朝阳, 薛彦瑾, 魏定邦. 负温环境下混凝土孔结构与强度和渗透性的关系[J]. 材料导报, 2022, 36(15): 21110198-6.
[9] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[10] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[11] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[12] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[13] 王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
[14] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[15] 陈猛, 颜鑫, 陈建淞, 孙影杰. 回收轮胎聚合物纤维混凝土高温损伤超声特性研究[J]. 材料导报, 2022, 36(11): 21030318-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed