Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21010120-5    https://doi.org/10.11896/cldb.21010120
  无机非金属及其复合材料 |
利用坍落扩展试验表征水泥基材料流变参数研究进展
伍勇华1,*, 李莹1, 党梓轩2, 何娟1, 齐昭栋1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 中国电建路桥集团西北分公司,西安 710021
Recent Advances in the Use of Slump-flow Test in Characterizing Rheological Parameters of Cement-based Materials
WU Yonghua1,*, LI Ying1, DANG Zixuan2, HE Juan1, QI Zhaodong1
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Northwest Branch Company of Powerchina Roadbridge Group Co.,Ltd., Xi'an 710021, China
下载:  全 文 ( PDF ) ( 14637KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土、砂浆和水泥浆等水泥基材料的流变性能是影响其浇筑、灌注和注浆等成型工艺难易程度的重要因素。合理评价水泥基材料的屈服应力、黏度等流变参数可以指导材料在工程中的合理应用。
   水泥基材料流变参数常用的表征方式有两种:一是利用流变仪测定剪切应力和剪切速率,表征浆体的流变参数;二是利用坍落扩展试验进行评价。后者与工程中材料的实际流动状态更为吻合,因此近年来被研究者所重视。
   水泥基材料坍落过程中变形区与未变形区分界处的剪切应力即为其屈服应力,但是对大流动性浆体,由于不存在未变形区,该方法不适用。对于大流动性浆体,可通过最终扩展度表征浆体的屈服应力。而浆体黏度的表征需要采用动态测试,即测定坍落度或扩展度随时间的变化规律才能予以表征。高速摄像方法能够对初期快速流动过程进行精细测定,具有一定的优越性。剪切应力和剪切速率的表征常用的是水平剪切模型,也可采用侧面滑移模型,但两者均不够完善。此外,截锥筒的形状和尺寸、提筒速度、表面张力、材料的颗粒组成等因素会对流变参数的表征产生影响。
   本文从屈服应力的表征、黏度的表征、剪切应力与剪切速率的表征、影响因素等方面,对利用坍落和坍落扩展试验表征水泥基材料流变参数的研究进展进行了总结,分析了不同方法的异同和优缺点,并提出了未来的研究方向,以期对利用坍落扩展测试表征水泥基材料流变参数的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伍勇华
李莹
党梓轩
何娟
齐昭栋
关键词:  坍落度  扩展度  屈服应力  黏度  流变参数    
Abstract: The rheological properties of cement-based materials such as concrete, mortar and cement paste are important factors that affect the techno-logies of casting, pouring and grouting, etc. A reasonable evaluation of rheological parameters such as yield stress and viscosity of cement-based materials can help a lot in guiding the material for its reasonable application in engineering.
Two methods are commonly applied to evaluate the rheological parameters of cement-based materials. One is measuring shear stress and shear rate by rheometer to characterize the rheological parameters of the paste. The other is that evaluating the rheological parameters of cement-based materials by slump spreading test. In resulting of the latter method is more consistent with the actual flow state of materials in engineering, in which there has been growing interest in recent years.
The yield stress is the shear stress at the boundary between the deformed zone and the undeformed zone during the slump of cement-based materials. However, this method is not applicable for large-fluidity pastes because there is no undeformed region. The yield stress of large-fluidity pastes can be evaluated by the final spreading value. The characterization of paste viscosity requires dynamic test, which means measuring the law of slump or spreading with time. The method of high-speed photography is advantageous because measuring the initial rapid flow process precisely is possible to be performed by it. A horizontal shear model is commonly performed to characterize shear stress and shear rate. As an alternative, the lateral slip model is able to characterize shear stress and shear rate as well. Nevertheless, both are not perfect. In addition, the shape and size of the truncated cone, the velocity of the lift cylinder, surface tension of pastes and particle composition of the material affect the characterization of the rheological parameters.
This paper summarizes the research progress of cement-based materials rheological parameters is characterized by the slump and the slump spreading test, in which the characterization of yield stress, viscosity, shear stress and shear rate are considered and the influencing factors as well. Furthermore, similarities, differences, merits and demerits of various methods are discussed. In order to provide references for the development of the rheological parameters of cement-based materials by the slump spreading test, the possible research field in future is proposed.
Key words:  slump    spread    yield stress    viscosity    rheological parameters
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TU528.01  
基金资助: 陕西省自然科学基础研究计划项目(2021JM-353)
通讯作者:  *wuyonghua@xauat.edu.cn   
作者简介:  伍勇华,西安建筑科技大学副教授,硕士研究生导师。1996年毕业于重庆建筑大学材料学院,获得学士学位;2002年6月在西安建筑科技大学获得硕士学位;2011年1月在西北工业大学理学院材料学专业获得博士学位。主要从事混凝土外加剂和高性能混凝土方面的研究工作,在国内外重要期刊发表论文80余篇。
引用本文:    
伍勇华, 李莹, 党梓轩, 何娟, 齐昭栋. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 21010120-5.
WU Yonghua, LI Ying, DANG Zixuan, HE Juan, QI Zhaodong. Recent Advances in the Use of Slump-flow Test in Characterizing Rheological Parameters of Cement-based Materials. Materials Reports, 2022, 36(16): 21010120-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010120  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21010120
1 Huang D N. Journal of the Chinese Ceramic Society, 1980(3),303(in Chinese).
黄大能. 硅酸盐学报,1980(3),303.
2 Banfill P F G. In: 11th International Congress on the Chemistry of Cement. Durban, South Africa, 2003,pp.50.
3 Wallevik O H, Wallevik J E. Cement and Concrete Research,2011, 41(12),1279.
4 Yuan Q, Li B Y, Shi C J, et al. Materials Reports A: Review Papers, 2018, 32(9),2976(in Chinese).
元强, 李白云, 史才军,等. 材料导报:综述篇, 2018, 32 (9), 2976.
5 Jiao D W, Shi C J, Yuan Q. Construction and Building Materials, 2019, 226(11),591.
6 Souza M T, Ferreira I M, Guzi E, et al. Journal of Building Enginee-ring, 2020, 32(11), 101833.
7 Kostrzanowska-Siedlarz A, Golaszewski J. Construction and Building Materials, 2015, 94,555.
8 Tay Y W D,Qian Y, Tan M J. Composites Part B,Engineering,2019,174(10),106968.
9 Koch J A, Castaneda D I, Ewoldt R H, et al. Cement and Concrete Research, 2019, 115(1),31.
10 Mechtcherine V, Shyshko S. Cement and Concrete Research, 2015, 55(1), 81.
11 Roussel N. Cement and Concrete Research, 2005, 35(9), 1656.
12 Liu Y, Shi C J, Jiao D W, et al. Journal of the Chinese Ceramic Society, 2017, 45(5), 708(in Chinese).
刘豫, 史才军, 焦登武,等. 硅酸盐学报,2017,45(5),708.
13 Lu C R, Yang H, Mei G X. Construction and Building Materials, 2015, 75(6),157.
14 Li Z G, Cao G D. Cement and Concrete Research, 2019, 120(6),217.
15 Liu G M, Cheng W M, Chen L J, et al. Construction and Building Materials, 2020, 243(3), 118180.
16 Li H Y, Ding S Q, Zhang L Q, et al. Construction and Building Mate-rials, 2021, 269(1),121327.
17 Yu R, Zhou F J, Yin T Y, et al. Construction and Building Materials, 2020,12,12150.
18 Wallevik O H, Feys D, Wallevik J E, et al. Cement and Concrete Research, 2015, 78(8), 100.
19 Huang F L, Li H J, Xie Y J, et al. Concrete, 2015,312(10),119(in Chinese).
黄法礼, 李化建, 谢永江,等. 混凝土, 2015,312(10),119.
20 Feys D, Asghari A. Cement and Concrete Research, 2019,117(3),69.
21 Ley-Hernández A M, Feys D, Kumar A. Cement and Concrete Research, 2020, 137(11), 106189.
22 Chidiac S E, Habibbeigi F, Chan D. ACI Materials Journal, 2006, 103(6),413.
23 Ferrara L, Cremonesi M, Tregger N, et al. Cement and Concrete Research, 2012, 42(8), 1134.
24 Wu Z W, Lian H Z. High performance concrete, China Railway Publis-hing House, China,1999,pp.204(in Chinese).
吴中伟,廉慧珍. 高性能混凝土,中国铁道出版社,1999,pp.204.
25 Li W C, Guo L J, Liu G S, et al. Construction and Building Materials, 2020, 260(10),119770.
26 Amziane S, Ferraris C F, Koehler E P. Journal of Research of the Natio-nal Institute of Standards & Technology, 2005, 110(1),55.
27 Matos P R, Pilar R, Casagrande C A, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(1),24.
28 Trampus B C, França S C A. Journal of Cleaner Production, 2020, 257(1),120534.
29 Gao J L, Fourie A. Minerals Engineering, 2015, 71(2),120.
30 Yang H, Zhou Z H, Ren J, et al. Hydrogeology and Engineering Geology,2018,45(1),151(in Chinese).
杨愧,周振华,任喆,等. 水文地质工程地质,2018, 45(1), 151.
31 Nagaraj A, Joshi A, Shamanna G, et al. Indian Concrete Journal, 2018, 92(8), 19.
32 Wallevik J E. Cement and Concrete Research, 2006,36,1214.
33 Murata J. Materials and Structures, 1984,17(2), 117.
34 Christensen G.Modelling the flow of fresh concrete, the slump test. Ph.D. Thesis, Princeton University, USA, 1991.
35 Schowalter W R, Christensen G. Journal of Rheology, 1998,42(4), 865.
36 Abramian A, Staron L, Lagrée P Y. Journal of Rheology, 2020, 64(5), 1227.
37 Tregger N, Ferrara L, Shah S P. ACI Material Journal,2008,105(6), 558.
38 Clayton S,Grice T G,Boger D V. Cement and Concrete Research,2003,70(1), 3.
39 Thanh H T, Li J C, Zhang Y X. Construction and Building Materials, 2019, 211(6),109.
40 Liu Y, Balmforth N J, Hormozi S. Journal of Non-Newtonian Fluid Mechanics, 2018, 258(8),45.
41 Chidiac S E,Mahmoodzadeh F. Cement and Concrete Composites,2009,31(8),535.
42 Lei L J, Bertevas E L, Khoo B C, et al. Journal of Non-Newtonian Fluid Mechanics,2018,260(10),163.
43 SaakA W, Jennings H M, Shah S P. Cement and Concrete Research, 2004, 34(8),363.
44 Pashias N, Boger D V, Summers J, et al. Journal of Rheology, 1996,40 (6),1179.
45 Benaicha M, Alaoui A H, Jalbaud O,et al. Journal of Materials Research and Technology, 2019, 8(2),2063.
46 Coussot P, Proust S, Ancey C. Journal of Non-Newtonian Fluid Mecha-nic. 1996, 66(1), 55.
47 Roussel N, Stefani C, Leroy R. Cement and Concrete Research,2005, 35, 817.
48 Roussel N, Coussot P. The Society of Rheology, 2005, 49(3),705.
49 Choi M S, Lee J S, Ryu K S, et al. Construction and Building Materials, 2016, 106(3), 632.
50 Liu Z Q. Building Decoration Materials World, 2020,128(2),44(in Chinese).
刘自强. 混凝土世界, 2020,128(2),44.
51 Alberti M G, Enfedaque A, Gálvez J C. Construction and Building Materials, 2019, 21(9),144.
52 Ferraris C F, Koehler E, Amziane S, et al. Report on measurements of workability and rheology of fresh concrete, American Concrete Institute, USA, 2008.
53 Hu X F, Su Z X. Concrete, 2006(8), 69(in Chinese).
胡小芳, 苏志学. 混凝土, 2006(8), 69.
54 Tuan N M, Hau Q V, Chin S, et al. Automation in Construction, 2021, 121(1),103432.
55 Tregger N, Gregori A, Ferrara L, et al. Construction and Building Materials, 2012, 28(1),499.
56 Ye H, Gao X J, Wang R, et al. Construction and Building Materials,2017,153(6),193.
57 Xu D H, Xu M. Introduction to concrete materials, Standards Press of China, 2002,pp.33(in Chinese).
徐定华,徐敏. 混凝土材料学概论,中国标准出版社,2002,pp.33.
58 Gao J L, Fourie A. Minerals Engineering, 2015, 71(2), 120.
59 Bouvet A, Ghcorbel E, Bennacer R. Cement and Concrete Research, 2010, 40(10),1517.
60 Wu Y H, Dang Z X, Zhu T, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(9),2732(in Chinese).
伍勇华,党梓轩,祝婷,等. 硅酸盐通报, 2020,39(9),2732.
61 安晓鹏,史才军,魏子易,等. 中国专利, 201810266731.9, 2020-04-01.
62 Tan Z J, Bernal S A, Provis J L. Materials and Structures, 2017, 50(6),235.
63 Wu Y H, Dang Z X, He J, et al. Journal of Sediment Research,2020,45(5),69(in Chinese).
伍勇华,党梓轩,何娟,等. 泥沙研究,2020,45(5),69.
64 Guo Y B, Xu D. Journal of Taiyuan University of Science and Technology,2015,36(5),396(in Chinese).
郭亚兵,徐鼎. 太原科技大学学报,2015,36(5),396.
65 Flatt R J, Laroda D, Roussel N. Cement and Concrete Research, 2006, 36(1), 99.
66 Zhao J H, Liu L. Journal of Xi'an University of Architecture & Technology, 2015, 47(2), 192(in Chinese).
赵建会,刘浪. 西安建筑科技大学学报, 2015, 47(2), 192.
67 Garmsiri M R, Shirazi H H A, Yarahmadi M R. Applied Rheology, 2015, 25(2),23416.
68 Gao J L, Fourie A. Minerals Engineering, 2015, 81(10), 116.
69 Hu J, Wang K J. Construction and Building Materials, 2010,25(3),1196.
70 Toutanji H, Goff C, Pierce K, et al. Cement and Concrete Composites,2015, 62(9), 59.
71 Gan Y, George V F. Chinese Science Bulletin,2009,54(1), 1(in Chinese).
甘阳, George V F. 科学通报, 2009, 54(1), 1.
72 Roussel N. Journal of the Chinese Ceramic Society,2015,43(10),1401(in Chinese).
Roussel N. 硅酸盐学报,2015,43(10),1401.
73 Jiao D W, An X P, Shi C J, et al. Journal of the Chinese Ceramic Society,2017, 45(9), 1360(in Chinese).
焦登武,安晓鹏,史才军,等. 硅酸盐学报,2017, 45(9), 1360.
74 Taboada I G, Fonteboa B G, López E J, et al. Journal of Cleaner Production, 2017, 156(6), 1.
75 Mahaut F, Mokeddem S, Chateau X, et al. Cement and Concrete Research, 2008, 38(11), 1276.
76 Li L, Zhang J, Zhang X W. Metal Mine, 2017(1), 30(in Chinese).
李亮, 张谏, 张希巍. 金属矿山, 2017(1), 30.
77 Meng W N, Kumar A, Khayat K H. Cement and Concrete Composites, 2019,99(5), 181.
78 Hu M B, Zhang Y M, Gao W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020,588(5), 124377.
[1] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 21010230-7.
[2] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[3] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[4] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[5] 姜骞, 于诚, 袁森森, 冉千平. 超早强聚羧酸对低坍落度混凝土流变与气泡结构经时变化的影响[J]. 材料导报, 2021, 35(20): 20022-20027.
[6] 崔介东, 曹欣, 王萍萍, 石丽芬, 仲召进, 赵凤阳, 高强, 李金威. 玻璃黏温曲线的全温度段拟合[J]. 材料导报, 2020, 34(Z2): 128-131.
[7] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[8] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[9] 周鹏, 赵华, 陶海征, 祖成奎, 刘永华, 石凯文, 张瑞. 硫系玻璃熔体的黏度测试方法和黏温方程[J]. 材料导报, 2019, 33(Z2): 181-188.
[10] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[11] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[12] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[13] 王杏娟,田阔,樊亚鹏,王浩楠,吴哲. TiO2对连铸三元无氟CaO-SiO2-TiO2渣系特性的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2100-2104.
[14] 杨 帅,张可可,崔 婧,张大伟. 温度、浓度对水/乙醇混合溶剂中壳聚糖溶液黏度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 109-113.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed