Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21010216-11    https://doi.org/10.11896/cldb.21010216
  金属与金属基复合材料 |
高性能锂金属电池负极结构设计及界面强化研究进展
姚诗言, 曾立艳, 刘军*
华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室,广州 510641
Research Progress in Structure Design and Interface Enhancement of Lithium Anode for High-performance Lithium Metal Batteries
YAO Shiyan, ZENG Liyan, LIU Jun*
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 37873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池(LIBs)作为目前使用最广泛的二次电池,绝大多数以理论比容量较低的石墨(372 mAh/g)为负极,已无法满足人们日益增长的对电池储能性能的要求。金属锂因其超高的理论比容量(3 860 mAh/g)和最低的还原电势(-3.04 V,相比于氢标准电极)被看作是下一代高能量密度可充电锂电池最理想的负极材料。尤其是当金属锂与硫、氧组成锂-硫或锂-氧电池体系时,其理论能量密度远超锂离子电池,受到研究者的广泛关注。
   然而,库伦效率低和稳定性差一直是限制锂金属电池商业化应用的关键因素。当金属锂直接用作电池负极时,其易与电解液反应,在其表面形成一层脆弱的固态电解质中间相(SEI)膜。电池循环时,负极体积膨胀会破坏SEI膜,诱导锂枝晶和“死锂”形成,造成不可逆的容量损失。此外,锂枝晶生长至一定程度后会刺穿隔膜,导致电池内部短路甚至发生爆炸,引发严重的安全问题。
   为了解决上述问题,研究者们在锂金属负极失效机制、结构设计及界面强化等方面进行了许多探索。一些研究枝晶生长的理论模型如Chazalviel-Brissot模型、Yamaki模型和静电屏蔽模型等已受到广泛认可。在此基础上,研究者们尝试通过设计三维集流体、表面改性集流体以及构筑原位或人工SEI膜的方式来抑制锂枝晶生长和缓解体积效应,并取得了一定成果。
   本文系统地介绍了几种典型的锂金属负极失效机制,着重总结了近年来研究者们在锂金属负极结构设计和界面强化方面的研究进展,最后分析了锂金属电池研究中仍存在的问题并给出了一些建议,以期为早日实现锂金属电池的商业化应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚诗言
曾立艳
刘军
关键词:  锂金属电池  锂金属负极  固态电解质中间相  锂枝晶  结构设计  界面强化    
Abstract: As the most widely used secondary battery at present, lithium-ion batteries (LIBs) with graphite anode cannot meet the increasing demands for high energy density storage systems in consequence of the low theoretical capacity of graphite (372 mAh/g). Among all anode candidates, metallic Li has been regarded as the most promising anode for the next generation rechargeable batteries, due to its ultrahigh theoretical capacity of 3 860 mAh/g and its lowest redox potential (-3.04 V, versus standard hydrogen electrode). Especially, when Li is coupled with high-energy non-Li-containing cathodes such as S and O2, the assembled Li-S and Li-O2 batteries boast a much higher energy density than LIBs, thus deserving to be intensively investigated.
However, low Coulombic efficiency and poor stability have been crucial factors limiting the commercial application of lithium metal batte-ries (LMBs). When directly used as the negative electrode, metallic Li is easy to react with electrolytes, forming a chemically unstable and mechanically fragile solid electrolyte interphase (SEI) between them. The repeated rupture of SEI caused by the drastic volume expansion of anode du-ring continuous cycling will induce the dendrites growth and ‘dead Li' formation, leading to irreversible capacity loss. Furthermore, when lithium dendrites grow to a certain extent, they will penetrate the separator, resulting in cell shorting or even explosion, thus causing serious safety ha-zard.
Extensive efforts have been devoted to dealing with the issues mentioned above, including failure mechanism exploration, structure design and interface enhancement of lithium metal anode. Some advanced technologies, such as introducing 3D, surface modified current collectors and building in-situ/artificial SEI on lithium anode, are effectively applied to inhibit the dendrite growth and alleviate the volume effect based on the widely accepted theoretical models like Chazalviel-Brissot model, Yamaki model and electrostatic shielding model.
This review systematically introduces several typical failure mechanisms of lithium metal anodes and emphatically summarizes the recent key progress in structure design and interface enhancement strategies of lithium metal anode. After analyzing the remaining challenges, some suggestions are also provided to accelerate the commercialization of LMBs.
Key words:  lithium metal battery    lithium metal anode    solid electrolyte interphase    lithium dendrite    structure design    interface enhancement
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51771076);广东省珠江人才计划(2017GC010218);广东省重点研发计划(2020B0101030005)
通讯作者:  *msjliu@scut.edu.cn   
作者简介:  姚诗言,2020年6月毕业于华南理工大学,获得工学学士学位。现为华南理工大学材料科学与工程学院硕士研究生,在刘军教授的指导下进行研究。目前主要研究领域为高容量锂金属电池锂金属负极设计优化。刘军,2010年获大连理工大学博士学位,国家海外高层次人才青年项目入选者,现任华南理工大学材料科学与工程学院教授。主要从事高能量密度锂离子电池、钠离子电池、锂硫电池、金属空气电池、固体电解质等新型储能材料与器件研究。迄今为止已在Energy Environ. Sci.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Adv. Energy Mater.等国际著名学术刊物上发表SCI论文150余篇(第一/通讯作者100余篇),论文总被引用10 000余次,h指数52。
引用本文:    
姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
YAO Shiyan, ZENG Liyan, LIU Jun. Research Progress in Structure Design and Interface Enhancement of Lithium Anode for High-performance Lithium Metal Batteries. Materials Reports, 2022, 36(16): 21010216-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010216  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21010216
1 Choi N S, Chen Z H, Freunberger S A, et al. Angewandte Chemie-International Edition, 2012, 51 (40), 9994.
2 Seh Z W, Sun Y M, Zhang Q F, et al. Chemical Society Reviews, 2016, 45 (20), 5605.
3 Etacheri V, Marom R, Elazari R, et al. Energy & Environmental Science, 2011, 4 (9), 3243.
4 Rodrigues M T F, Babu G, Gullapalli H, et al. Nature Energy, 2017, 2 (8), 17108.
5 Chu S, Majumdar A. Nature, 2012, 488 (7411), 294.
6 Whittingham M S. Proceedings of the IEEE, 2012, 100, 1518.
7 Cheng X B, Huang J Q, Zhang Q. Journal of the Electrochemical Society, 2018, 165(1), A6058.
8 Liang J, Sun Z H, Li F, et al. Energy Storage Materials, 2016, 2, 76.
9 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11 (1), 19.
10 Shen X, Liu H, Cheng X B, et al. Energy Storage Materials, 2018, 12, 161.
11 Tarascon J M, Armand M. Nature, 2001, 414 (6861), 359.
12 Guan X Z, Wang A X, Liu S, et al. Small, 2018, 14 (37), 1801423.
13 Zou P C, Wang Y, Chiang S W, et al. Nature Communications, 2018, 9, 464.
14 Yang C P, Yin Y X, Zhang S F, et al. Nature Communications, 2015, 6, 8058.
15 Peled E. Journal of the Electrochemical Society, 1979, 126 (12), 2047.
16 Peled E. Journal of Power Sources, 1983, 9 (3-4), 253.
17 Peled E, Golodnitsky D, Ardel G. Journal of the Electrochemical Society, 1997, 144(8), L208.
18 Goodenough J B, Kim Y. Chemistry of Materials, 2010, 22 (3), 587.
19 Zhai P B, Liu L X, Gu X K, et al. Advanced Energy Materials, 2020, 10 (34), 2001257.
20 Yu X W, Manthiram A. Energy & Environmental Science, 2018, 11 (3), 527.
21 Zhang R, Li N W, Cheng X B, et al. Advanced Science, 2017, 4 (3), 1600445.
22 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews, 2017, 117 (15), 10403.
23 Ye S F, Wang L F, Liu F F, et al. Advanced Energy Materials, 2020, 10 (44), 2002647.
24 Wang L, Zhou Z Y, Yan X, et al. Energy Storage Materials,2018,14,22.
25 Liu N, Lu Z D, Zhao J, et al. Nature Nanotechnology, 2014, 9 (3), 187.
26 Lin D C, Liu Y Y, Cui Y. Nature Nanotechnology, 2017, 12 (3), 194.
27 Chazalviel J N. Physical Review A, 1990, 42 (12), 7355.
28 Li L L, Li S Y, Lu Y Y. Chemical Communications, 2018, 54 (50), 6648.
29 Brissot C, Rosso M, Chazalviel J N, et al. Journal of the Electrochemical Society, 1999, 146 (12), 4393.
30 Ghazi Z A, Sun Z, Sun C, et al. Small, 2019, 15 (32), 1900687.
31 Guo Y P, Li H Q, Zhai T Y. Advanced Materials, 2017, 29 (29), 1700007.
32 Yamaki J I, Tobishima S I, Hayashi K, et al. Journal of Power Sources, 1998, 74 (2), 219.
33 Monroe C, Newman J. Journal of the Electrochemical Society, 2003, 150 (10), A1377.
34 Ding F, Xu W, Graff G L, et al. Journal of the American Chemical Society, 2013, 135 (11), 4450.
35 Chianelli R R. Journal of Crystal Growth, 1976, 34 (2), 239.
36 Yang H J, Guo C, Naveed A, et al. Energy Storage Materials, 2018, 14, 199.
37 Steiger J, Kramer D, Moenig R. Journal of Power Sources, 2014, 261, 112.
38 Stark J K, Ding Y, Kohl P A. Journal of the Electrochemical Society, 2013, 160 (9), D337.
39 Steiger J, Kramer D, Moenig R. Electrochimica Acta, 2014, 136, 529.
40 Park M S, Ma S B, Lee D J, et al. Scientific Reports, 2014, 4, 3815.
41 Lin D C, Liu Y Y, Liang Z, et al. Nature Nanotechnology, 2016, 11 (7), 626.
42 Li T, Liu H, Shi P, et al. Rare Metals, 2018, 37 (6), 449.
43 Le T H, Liang Q H, Chen M, et al. Small, 2020, 16 (30), 2001992.
44 Yan K, Lu Z D, Lee H W, et al. Nature Energy, 2016, 1, 16010.
45 Li Q, Zhu S P, Lu Y Y. Advanced Functional Materials, 2017, 27 (18), 1606422.
46 Lu L L, Ge J, Yang J N, et al. Nano Letters, 2016, 16 (7), 4431.
47 Cheng X B, Hou T Z, Zhang R, et al. Advanced Materials, 2016, 28 (15), 2888.
48 Fan L, Zhuang H L, Zhang W D, et al. Advanced Energy Materials, 2018, 8 (15), 1703360.
49 Zhao Y, Hao S G, Su L, et al. Chemical Engineering Journal, 2020, 392, 123691.
50 Jeong J, Chun J Y, Lim W G, et al. Nanoscale, 2020, 12 (22), 11818.
51 Zhang D, Dai A, Fan B F, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 31542.
52 Yu B Z, Tao T, Mateti S, et al. Advanced Functional Materials, 2018, 28 (36), 1803023.
53 Liang Z, Lin D C, Zhao J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (11), 2862.
54 Liu Y Y, Lin D C, Liang Z, et al. Nature Communications, 2016, 7, 10992.
55 Zhou T, Shen J D, Wang Z S, et al. Advanced Functional Materials, 2020, 30 (14), 1909159.
56 Zhang C, Lyu W, Zhou G M, et al. Advanced Energy Materials, 2018, 8 (21), 1703404.
57 Zhang Q, Luan J Y, Tang Y G, et al. Journal of Materials Chemistry A, 2018, 6(38), 18444.
58 Luan J Y, Zhang Q, Yuan H Y, et al. Advanced Science, 2019, 6 (20), 1901433.
59 Tan L, Li X L, Liu T C, et al. Journal of Power Sources, 2020, 463, 228157.
60 Cheng X B, Yan C, Peng H J, et al. Energy Storage Materials, 2018, 10, 199.
61 Lu Y Y, Tu Z Y, Archer L A. Nature Materials, 2014, 13 (10), 961.
62 Zhang X Q, Cheng X B, Chen X, et al. Advanced Functional Materials, 2017, 27 (10), 1605989.
63 Liang X, Pang Q, Kochetkov I R, et al. Nature Energy, 2017, 2 (9), 17119.
64 Liu J, Xu R, Yan C, et al. Energy Storage Materials, 2020, 30, 27.
65 Kozen A C, Lin C F, Pearse A J, et al. ACS Nano, 2015, 9 (6), 5884.
66 Sun Y P, Zhao Y, Wang J W, et al. Advanced Materials, 2019, 31 (4), 1806541.
67 Zhang H M, Liao X B, Guan Y P, et al. Nature Communications, 2018, 9, 3729.
68 Feng Y Y, Zhang C F, Li B, et al. Journal of Materials Chemistry A, 2019, 7 (11), 6090.
69 Jiang Z P, Jin L, Han Z L, et al. Angewandte Chemie-International Edition, 2019, 58 (33), 11374.
70 Liu S F, Xia X H, Deng S J, et al. Advanced Materials, 2019, 31 (3), 1806470.
71 Choubey P K, Chung K S, Kim M S, et al. Minerals Engineering, 2017, 110, 104.
72 Lyu W G, Wang Z H, Cao H B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(2), 1504.
[1] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[2] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
[3] 吴苗苗, 于虎, 王咏琪, 窦睿然, 胡泊, 朱爽秋, 马向东. 锂金属电极与LiCl界面相互作用的第一性原理研究[J]. 材料导报, 2022, 36(12): 21030181-5.
[4] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[5] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[6] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[7] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[8] 曹忠亮, 郭登科, 林国军, 胡清明, 富宏亚. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194.
[9] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[10] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[11] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[12] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[13] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[14] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed